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On the Main Aspects of the Inverse Conductivity
Problem
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Abstract We consider a nonlinear inverse problem for an elliptic partial dif-
ferential equation known as the Calderón problem or the inverse conductivity
problem. Based on several results, we briefly summarize them to motivate
this research field. We give a general view of the problem by reviewing the
available results for C2 conductivities. After reducing the original problem to
the inverse problem for a Schrödinger equation, we apply complex geometri-
cal optics solutions to show its uniqueness. After extending the ideas of the
uniqueness proof result, we establish a stable dependence between the con-
ductivity and the boundary measurements. By using the Carleman estimate,
we discuss the partial data problem, which deals with measurements that are
taken only in a part of the boundary.
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1. Introduction

You may ask what the inverse conductivity problem is. Well, to answer this ques-
tion, as the name of the problem indicates, we should consider the direct conduc-
tivity problem first, given by ∇ · γ∇w = 0 in Ω,

w = f on ∂Ω,

where Ω is a bounded open set of Rn with a smooth boundary ∂Ω, γ ∈ C2(Ω̄)
is a positive real-valued function that represents the electrical conductivity of the
domain Ω. Physically interpreted, the application of a voltage f ∈ H1/2(∂Ω) on the
boundary induces an electrical potential w in the interior of Ω, where w ∈ H1(Ω)
is the unique weak solution of this elliptic boundary value problem.

We define the Dirichlet-to-Neumann map (DN map) Λγ by relating a boundary
voltage f (Dirichlet data) to the flux at the boundary γ ∂w∂ν (Neumann data) as
follows:

Λγ : H1/2(∂Ω)→ H−1/2(∂Ω),
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f 7→ Λγ(f) = γ
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where ∂
∂ν is the outward normal derivative at ∂Ω.

From the variational formulation of the precedent problem, it is clear that

〈Λγf, g〉 =

〈
γ
∂w

∂ν
, g

〉
=

∫
Ω

γ∇w∇zdx ∀f, g ∈ H1/2(∂Ω),

where z ∈ H1(Ω), z
∣∣
∂Ω

= g. It follows from this definition that Λγ is a bounded

linear map from H1/2(∂Ω) into H−1/2(∂Ω). In this context, Calderón in his pio-
neer paper [9] formulated the Calderón problem as being the problem studying the
inversion of the map γ 7→ Λγ , i.e., the posed question is whether we can determine
γ from the knowledge of Λγf in each f ∈ H1/2(∂Ω). This inversion method is also
called electrical impedance tomography (EIT). It is a medical imaging technology
with several applications, including the detection of breast cancer and pulmonary
imaging. For more detailed arguments on this technique, see the review paper-
s [6, 18].

The determination of γ from the DN map has different aspects. In this paper, we
answer the preceding question in the interior of the studied domain by giving results
on the three aspects: uniqueness, stability and partial data. For the boundary
determination, in the case that smooth conductivities Kohn and Vogelius [21] proved
that Λγ determines γ and all its normal derivatives on the boundary. More general
results were shown in [2,31]. In particular, Brown [7] proved that we could recover
the boundary values of a W 1,1 or a C0 conductivity from the knowledge of Λγ .

While the current paper only deals with the inverse conductivity problem in
three and higher dimensions, we mention that the approach for the two-dimensional
problem is quite different, which is essentially based on complex analysis. We refer
readers to the work of Astala and Päivärinta [5] on bounded measurable conduc-
tivities for a deeper understanding of the problem in the plane.

In the following, we only consider isotropic conductivities, which are not depen-
dent on direction. If a conductivity depends on direction, it is called an anisotropic
conductivity. In this case, we are in the presence of the anisotropic Calderón prob-
lem. In the plane, uniqueness was shown for L∞ anisotropic conductivities in [4].
For n ≥ 3, this problem is also called Calderón’s inverse problem on Riemannian
manifolds, and as was pointed out in [23], this is a geometrical problem that has up
to now remained open. For more detailed arguments, please also see [12] .

There are several problems related to the main one. The fractional Calderón
problem is a nonlocal version of the classical one [11]. It was first introduced in [15].
In the present work, it is a question to study a Schrödinger operator containing
an electrical potential. However, if there is also a nonzero magnetic potential,
we are in the presence of another variant of the standard problem, namely the
Calderón problem for the magnetic Schrödinger operator [22]. By combining the
two precedent problems, we can also define another closely related one, which is
the inverse conductivity problem for the fractional magnetic operator, and it is the
subject of [24,25].

Under the broad research field of the Calderón problem, we focus on its main
aspects. We propose a simplified review of Salo’s lecture notes [28] and some chap-
ters from [13]. The rest of this article is organized in the following way: the applied
notation and background knowledge are summarized in Section 2. In Section 3, we
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