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Traveling Wave Solutions in an Integrodifference
Equation with Weak Compactness∗
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Abstract This article studies the existence of traveling wave solutions in
an integrodifference equation with weak compactness. Because of the special
kernel function that may depend on the Dirac function, traveling wave maps
have lower regularity such that it is difficult to directly look for a traveling wave
solution in the uniformly continuous and bounded functional space. In this
paper, by introducing a proper set of potential wave profiles, we can obtain
the existence and precise asymptotic behavior of nontrivial traveling wave
solutions, during which we do not require the monotonicity of this model.
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1. Introduction

When some species with non-overlapping generations are concerned, their spatial
dispersal and growth often occur at different stages of the species, and many plants
have the feature. In population dynamics, Mollison [14] and Weinberger [16] pro-
posed some discrete time models equipping with spatial variables to describe these
phenomena, which are integrodifference equations [11]. One typical integrodiffer-
ence equation takes the following iterative form

wn+1(x) =

∫
R
b(wn(y))k(x− y)dy, x ∈ R, n = 0, 1, 2, · · · . (1.1)

Regarding (1.1) as a model in population dynamics, then wn(x) often denotes the
density of the species at location x of the nth generation, b is the birth function
while k reflects the spatial movement law and may be a probability distribution
that is also the so-called kernel function. Since Weinberger [16], the traveling wave
solutions of (1.1) have been widely studied, see some results by Bourgeois et al. [1],
Fang and Zhao [2], Hsu and Zhao [3], Kot [5], Li et al. [7], Liang and Zhao [9], Wang
and Castillo-Chavez [15], Weinberger et al. [17], Yi et al. [18]. Here, a traveling wave
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solution of (1.1) is a special solution taking the form

wn(x) = ϕ(t), t = x+ cn ∈ R,

in which ϕ is the wave profile that propagates in the spatial media at the constant
speed c, and t = x+ cn is the traveling wave coordinate. That is, a traveling wave
solution must satisfy

ϕ(t) =

∫
R
b(ϕ(y))k(t− c− y)dy := B(ϕ)(t), t ∈ R.

Clearly, a traveling wave solution is a fixed point of B in proper functional space.
When b is continuous and k is Lebesgue measurable and integrable, then we see

that the traveling wave map B(ϕ)(t) is equicontinuous if ϕ(t) belongs to proper
bounded continuous functional set. Based on such a property of the map B, it
is possible to obtain necessary smoothness in continuous functional space, which
implies that fixed point theorem can be applied to study the existence of traveling
wave solutions [3,10]. With the help of fixed point theorem, the existence of traveling
wave solutions may be obtained by the existence of proper generalized upper and
lower solutions [3, 10]. Of course, some other methods were also utilized to study
the existence of nonconstant traveling wave solutions in [7, 9, 15, 17, 18], in which
proper smoothness or monotone conditions of traveling wave maps are necessary.

However, in many examples, the kernel function is not Lebesgue measurable and
integrable such that the smoothness of B(ϕ)(t) encounters difficulty. In particular,
considering a nondispersing (sessile) component, Lutscher [11, Section 12.4] pro-
posed and studied some mathematical models, in which the kernel function may
depend on the Dirac function. One example in [11, Section 12.4] and Li [6] takes
the following form

un+1(x) = run(x) +

∫
R
f(un(y))k(x− y)dy, x ∈ R, n = 0, 1, 2, · · · , (1.2)

in which r > 0 is a constant formulating the dormant behavior of seeds, f is a
function reflecting the newborn viable seeds, k is a probability distribution denoting
the dispersal of seeds. Consider the traveling wave map

F1(ϕ)(t) = rϕ(t− c) +

∫
R
f(ϕ(y))k(t− c− y)dy,

then we see that F1(ϕ)(t) may be not equicontinuous if ϕ(t) belongs to proper
bounded continuous functional set. Due to the deficiency of higher regularity of F1,
we can not directly utilize fixed point theorem as that in [3, 10].

With the help of propagation theory of monotone semiflows [9, 17], Pan et al.
[13] obtained the minimal wave speed of traveling wave solutions in (1.2) if f is
monotone. Recently, Pan [12] has studied the existence and the asymptotic behavior
of traveling wave solutions of (1.2) by constructing proper wave profile set. More
precisely, the author first introduced a set Y by a pair of upper and lower solutions
of wave equation of (1.2), in which upper and lower solutions are given by the
conclusion in [13]. Based on such a set Y, they studied the set

Y =
⋂
n>0

Co(Fn1 [Y ]),
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