2D Random Approximation Method*

Changan Liu^{1,†} and Miao Ouyang²

Abstract H. Robbins and S. Monro studied the stochastic approximations of one-dimensional system. In this paper, we present the stochastic approximation method of 2D system.

Keywords 2D systems, Stochastic approximation, Mathematical expectation, Convergence.

MSC(2010) 62L20, 60B10.

1. Introduction

H. Robbins and S. Monro studied the stochastic approximation of one-dimensional system in [24]. However, there are a large number of 2D stochastic systems in stochastic fluid mechanics [2], especially in the diffusion of random electronic gas in magnetic region [29], random information flow [18,28] and other engineering fields. Recently, scholars have shown interest in the method of stochastic approximation, a lot of work has been done [3,7,8,14,30] and they are of great significance. The stochastic approximation method can be used to solve some random or random problems as well as some deterministic mathematical problems [16,23,31].

To a less extent, we investigate methods like stochastic average gradient [25], which performs well on objectives that are strongly-convex, and stochastic variance reduced gradient [11]. Fort et al. [6] establish results on the geometric ergodicity of hybrid samplers and in particular for the random-scan Gibbs sampler. Zhao and Wang [32], Jansen et al. [10] and Kriegesmann [13] estimate the statistical moments of the compliance by Monte Carlo approximations. Sparse polynomial chaos expansions [1,4,5,9] can be used to reduce the computational cost, but the computational cost associated with this approach becomes prohibitive for a large number of problems with uncertain inputs. [21, 22, 26, 27] use the stochastic approximation algorithm of Polyak-Ruppert averaging to favor the performance of stochastic approximation. Convergence results for mini-batch EM and SAEM algorithms appear recently in [17, 19] and [12] respectively.

Moreover, the standard method for stochastic root-finding problems is stochastic approximation [15, 20, 24]. In these 2D stochastic systems, take α as a constant, consider a region D on the plane R^2 , and find the equation satisfied by the unknown

[†]the corresponding author.

Email address: changanliu@cuhk.edu.hk (C. Liu), mouyang@mail.sdu.edu.cn (M. Ouyang)

¹Department of Medicine and Therapeutics Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

 $^{^2 \}rm School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China$

^{*}The authors were supported by Key Program of National Natural Science Foundation of China (Nos. U1806203, 61533011).

measurable regression function M(x) with error:

$$M(x) = \alpha. \tag{1.1}$$

The null point $x = \theta$ of the above equation is an ubiquitous and important problem in system identification, adaptive control, pattern recognition, adaptive filtering and neural network and other fields.

Generally, M(x) represents a mathematical expected value at time x of a certain experiment, which is an unknown function. However, for any x, the value of M(x)is measurable, and assume that M(x) is a monotone function of x in an unknown experiment. To obtain the null point $x = \theta$ of (1.1), we need to design an algorithm to determine a series of values $\{x_{mn}\}_{m,n\geq 0}$ in the region D of the plane \mathbb{R}^2 , which are

```
x_{00}, x_{01}, x_{02} \dots ,
x_{10}, x_{11}, x_{12} \dots ,
x_{20}, x_{21}, x_{22} \dots ,
```

these values satisfy in a probabilistic way, $\lim_{m \to \infty} x_{mn} = \theta$.

As mentioned above, for any x_{mn} , $M(x_{mn})$ can be measured, so it can provide information for the next measured value. Notice that there are two coordinate positions for the next measured value related to x_{mn} , (m+1,n) and (m, n+1), so there are two points,

$$x_{m+1,n}, x_{m,n+1}.$$
 (1.2)

However, for the next measured value, considering the convenience of researching problem, we usually regard x_{mn} as the value to be measured in the next step. Therefore, there are two values related to x_{mn} directly, which are

$$x_{m-1,n}, x_{m,n-1}.$$
 (1.3)

Define $D = \left\{ (m,n)/\frac{m \ge 0}{n \ge 0} \right\}$, then $D \subset R^2$. Besides, for any $(m,n) \in D$, con-

sidering a mathematical sequence $\{x_{mn}\}_{m,n\geq 0}$, and the boundary values x_{m0}, x_{0n} are known. Therefore, $M(x_{m0})$ and $M(x_{0n})$ are determined. Thus, for any value x_{mn} in D, the points directly connected with x_{mn} have two coordinate positions, (m-1,n) and (m, n-1).

