2D Random Approximation Method*

Changan Liu ${ }^{1, \dagger}$ and Miao Ouyang ${ }^{2}$

Abstract

H. Robbins and S. Monro studied the stochastic approximations of one-dimensional system. In this paper, we present the stochastic approximation method of 2 D system.

Keywords 2D systems, Stochastic approximation, Mathematical expectation, Convergence.
MSC(2010) 62L20, 60B10.

1. Introduction

H. Robbins and S. Monro studied the stochastic approximation of one-dimensional system in [24]. However, there are a large number of 2D stochastic systems in stochastic fluid mechanics [2], especially in the diffusion of random electronic gas in magnetic region [29], random information flow [18,28] and other engineering fields. Recently, scholars have shown interest in the method of stochastic approximation, a lot of work has been done $[3,7,8,14,30]$ and they are of great significance. The stochastic approximation method can be used to solve some random or random problems as well as some deterministic mathematical problems [16, 23, 31].

To a less extent, we investigate methods like stochastic average gradient [25], which performs well on objectives that are strongly-convex, and stochastic variance reduced gradient [11]. Fort et al. [6] establish results on the geometric ergodicity of hybrid samplers and in particular for the random-scan Gibbs sampler. Zhao and Wang [32], Jansen et al. [10] and Kriegesmann [13] estimate the statistical moments of the compliance by Monte Carlo approximations. Sparse polynomial chaos expansions $[1,4,5,9]$ can be used to reduce the computational cost, but the computational cost associated with this approach becomes prohibitive for a large number of problems with uncertain inputs. [21, 22, 26, 27] use the stochastic approximation algorithm of Polyak-Ruppert averaging to favor the performance of stochastic approximation. Convergence results for mini-batch EM and SAEM algorithms appear recently in $[17,19]$ and [12] respectively.

Moreover, the standard method for stochastic root-finding problems is stochastic approximation $[15,20,24]$. In these 2 D stochastic systems, take α as a constant, consider a region D on the plane R^{2}, and find the equation satisfied by the unknown

[^0]measurable regression function $M(x)$ with error:
\[

$$
\begin{equation*}
M(x)=\alpha \tag{1.1}
\end{equation*}
$$

\]

The null point $x=\theta$ of the above equation is an ubiquitous and important problem in system identification, adaptive control, pattern recognition, adaptive filtering and neural network and other fields.

Generally, $M(x)$ represents a mathematical expected value at time x of a certain experiment, which is an unknown function. However, for any x, the value of $M(x)$ is measurable, and assume that $M(x)$ is a monotone function of x in an unknown experiment. To obtain the null point $x=\theta$ of (1.1), we need to design an algorithm to determine a series of values $\left\{x_{m n}\right\}_{m, n \geq 0}$ in the region D of the plane R^{2}, which are

$$
\begin{aligned}
& x_{00}, x_{01}, x_{02} \ldots \ldots \\
& x_{10}, x_{11}, x_{12} \ldots \ldots \\
& x_{20}, x_{21}, x_{22} \ldots \ldots \\
& \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

these values satisfy in a probabilistic way, $\lim _{m \rightarrow \infty} x_{m n}=\theta$.
As mentioned above, for any $x_{m n}, M\left(x_{m n}\right)$ can be measured, so it can provide information for the next measured value. Notice that there are two coordinate positions for the next measured value related to $x_{m n},(m+1, n)$ and $(m, n+1)$, so there are two points,

$$
\begin{equation*}
x_{m+1, n}, x_{m, n+1} . \tag{1.2}
\end{equation*}
$$

However, for the next measured value, considering the convenience of researching problem, we usually regard $x_{m n}$ as the value to be measured in the next step. Therefore, there are two values related to $x_{m n}$ directly, which are

$$
\begin{equation*}
x_{m-1, n}, x_{m, n-1} \tag{1.3}
\end{equation*}
$$

Define $D=\left\{(m, n) / \begin{array}{l}m \geq 0 \\ n \geq 0\end{array}\right\}$, then $D \subset R^{2}$. Besides, for any $(m, n) \in D$, considering a mathematical sequence $\left\{x_{m n}\right\}_{m, n \geq 0}$, and the boundary values $x_{m 0}, x_{0 n}$ are known. Therefore, $M\left(x_{m 0}\right)$ and $M\left(x_{0 n}\right)$ are determined. Thus, for any value $x_{m n}$ in D, the points directly connected with $x_{m n}$ have two coordinate positions, $(m-1, n)$ and $(m, n-1)$.

[^0]: ${ }^{\dagger}$ the corresponding author.
 Email address: changanliu@cuhk.edu.hk (C. Liu), mouyang@mail.sdu.edu.cn (M. Ouyang)
 ${ }^{1}$ Department of Medicine and Therapeutics Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
 ${ }^{2}$ School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
 *The authors were supported by Key Program of National Natural Science Foundation of China (Nos. U1806203, 61533011).

