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1. Introduction

Let
∑
an be an infinite series, {sn}=

n∑
k=0

ak be the sequence of its partial sums and

nth mean of the sequence {sn} is given by un, s.t.,

un =

∞∑
k=0

unksk. (1.1)

(1.2)

Definition 1: An infinite series
∑
an is absolute summable, if

lim
n→∞

un = s

and
∞∑
n=1

|un − un−1|<∞, (1.3)

Definition 2: Let {pn} be a sequence with p0 > 0 and pn > 0 for n > 0

Pn =

n∑
v=0

pv →∞. (1.4)
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For α > −1, 0 < β 6 1, α+ β > 0, define:

∈α+β0 = 1, ∈α+βn =
(α+ β + 1)(α+ β + 2)....(α+ β + n)

n!
, (n = 1, 2, 3, ...) (1.5)

pα,βn =

n∑
v=0

∈α+β−1n−v pv, (1.6)

Pα,βn =

n∑
v=0

pα,βn →∞, n→∞ (1.7)

and

Pα,β−n = pα, β−n = 0, n > 1.

Then, the sequence-to-sequence transformation tn defines the (N, pα,βn ) mean of
series

∑
an and is given by:

tn =
1

Pα,βn

n∑
k=0

pα,βk sk, P
α,β
n 6= 0, n ∈ N (1.8)

and limn→∞ tn = s, and the series is called (N, pα,βn ), formed by sequence of coeffi-
cients {pα,βn }.
Further, if sequences {tn} is of bounded variation with index k > 1 i.e.

∞∑
n=1

(
Pα,βn

pα,βn

)k−1
|∆tn−1|k <∞, (1.9)

then the series
∑
an is said to be absolutely (R, pα,βn )k summable with index k or

|N, pα,βn |k summable to s.
Definition 3: The series is said to be |N, pα,βn ; δ|k summable, if

∞∑
n=1

(
Pα,βn

pα,βn

)δk+k−1
|∆tn−1|k <∞, (1.10)

with k > 1, δ > 0 and

∆tn = − pα,βn

Pα,βn Pα,βn−1

n∑
v=1

Pα,βv−1av, n > 1. (1.11)

Bor [1–3] generalised the result associated with Riesz summability factors. Bor
and Özarslan [4,5] established theorems using |N, pn; δ| summability factors. Özarslan
[11, 12] used the definition of almost increasing sequence for absolute summability.
Mishra et. al. [9,10] gave useful result on approximation. Also, Mishra et. al. [7,8]
provided new results related to matrix summability and improper integrals. In [13],
Sonker and Munjal established new theorem on absolute summability for Trian-
gle matrices. Yildiz [14, 15] determined theorems on generalized absolute matrix
summability factors.
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