Application of Almost Increasing Sequence for Absolute Riesz $\left|\bar{N}, p_{n}^{\alpha, \beta} ; \delta\right|_{k}$ Summable Factor*

Smita Sonker ${ }^{1}$, Rozy Jindal ${ }^{1}$ and Lakshmi Narayan Mishra ${ }^{2, \dagger}$

Abstract

In this paper, we generate an extended result by Bor and Seyhan concerning absolute Riesz summability factors. Further, we develop some wellknown results from our main result.

Keywords Absolute summability, Quasi- f-power increasing sequence, Infinite series, Riesz summability.
MSC(2010) 40F05, 40D15, 42A24, 40G05.

1. Introduction

Let $\sum a_{n}$ be an infinite series, $\left\{s_{n}\right\}=\sum_{k=0}^{n} a_{k}$ be the sequence of its partial sums and $n^{t h}$ mean of the sequence $\left\{s_{n}\right\}$ is given by u_{n}, s.t.,

$$
\begin{equation*}
u_{n}=\sum_{k=0}^{\infty} u_{n k} s_{k} \tag{1.1}
\end{equation*}
$$

Definition 1: An infinite series $\sum a_{n}$ is absolute summable, if

$$
\lim _{n \rightarrow \infty} u_{n}=s
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|u_{n}-u_{n-1}\right|<\infty \tag{1.3}
\end{equation*}
$$

Definition 2: Let $\left\{p_{n}\right\}$ be a sequence with $p_{0}>0$ and $p_{n} \geqslant 0$ for $n>0$

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \tag{1.4}
\end{equation*}
$$

[^0]For $\alpha>-1,0<\beta \leqslant 1, \alpha+\beta>0$, define:

$$
\begin{gather*}
\epsilon_{0}^{\alpha+\beta}=1, \epsilon_{n}^{\alpha+\beta}=\frac{(\alpha+\beta+1)(\alpha+\beta+2) \ldots(\alpha+\beta+n)}{n!},(n=1,2,3, \ldots) \tag{1.5}\\
p_{n}^{\alpha, \beta}=\sum_{v=0}^{n} \epsilon_{n-v}^{\alpha+\beta-1} p_{v} \tag{1.6}\\
P_{n}^{\alpha, \beta}=\sum_{v=0}^{n} p_{n}^{\alpha, \beta} \rightarrow \infty, n \rightarrow \infty \tag{1.7}
\end{gather*}
$$

and

$$
P_{-n}^{\alpha, \beta}=p_{-n}^{\alpha, \beta}=0, n \geqslant 1
$$

Then, the sequence-to-sequence transformation t_{n} defines the $\left(\bar{N}, p_{n}^{\alpha, \beta}\right)$ mean of series $\sum a_{n}$ and is given by:

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}^{\alpha, \beta}} \sum_{k=0}^{n} p_{k}^{\alpha, \beta} s_{k}, P_{n}^{\alpha, \beta} \neq 0, n \in N \tag{1.8}
\end{equation*}
$$

and $\lim _{n \rightarrow \infty} t_{n}=s$, and the series is called $\left(\bar{N}, p_{n}^{\alpha, \beta}\right)$, formed by sequence of coefficients $\left\{p_{n}^{\alpha, \beta}\right\}$.
Further, if sequences $\left\{t_{n}\right\}$ is of bounded variation with index $k \geqslant 1$ i.e.

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha, \beta}}{p_{n}^{\alpha, \beta}}\right)^{k-1}\left|\Delta t_{n-1}\right|^{k}<\infty \tag{1.9}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be absolutely $\left(R, p_{n}^{\alpha, \beta}\right)_{k}$ summable with index k or $\left|\bar{N}, p_{n}^{\alpha, \beta}\right|_{k}$ summable to s.
Definition 3: The series is said to be $\left|\bar{N}, p_{n}^{\alpha, \beta} ; \delta\right|_{k}$ summable, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha, \beta}}{p_{n}^{\alpha, \beta}}\right)^{\delta k+k-1}\left|\Delta t_{n-1}\right|^{k}<\infty \tag{1.10}
\end{equation*}
$$

with $k \geqslant 1, \delta \geqslant 0$ and

$$
\begin{equation*}
\Delta t_{n}=-\frac{p_{n}^{\alpha, \beta}}{P_{n}^{\alpha, \beta} P_{n-1}^{\alpha, \beta}} \sum_{v=1}^{n} P_{v-1}^{\alpha, \beta} a_{v}, \quad n \geqslant 1 \tag{1.11}
\end{equation*}
$$

Bor [1-3] generalised the result associated with Riesz summability factors. Bor and Özarslan $[4,5]$ established theorems using $\left|\bar{N}, p_{n} ; \delta\right|$ summability factors. Özarslan $[11,12]$ used the definition of almost increasing sequence for absolute summability. Mishra et. al. [9, 10] gave useful result on approximation. Also, Mishra et. al. [7, 8] provided new results related to matrix summability and improper integrals. In [13], Sonker and Munjal established new theorem on absolute summability for Triangle matrices. Yildiz [14, 15] determined theorems on generalized absolute matrix summability factors.

[^0]: \dagger the corresponding author.
 Email address: lakshminarayanmishra04@gmail.com (L. N. Mishra), smita.sonker@gmail.com (S. Sonker), rozyjindal1992@gmail.com (R. Jindal)
 ${ }^{1}$ Department of Mathematics, National Institute of Technology (NIT), Kurukshetra, 136119 India
 ${ }^{2}$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Tamil Nadu 632014, India.
 *The authors were supported by Science and Engineering Research Board (SERB) (Project No. EEQ/2018/000393).

