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Abstract

In this paper, several new constant-amplitude and variable-amplitude wave
solutions (namely, traveling wave solutions) of a generalized nonlinear Schrö-
dinger equation are investigated by using the extended homogeneous balance
method, where the balance method is applied to solve the Riccati equation and
the reduced nonlinear ordinary differential equation, respectively. In addition,
stability analysis of those solutions are also conducted by regular phase plane
technique.
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1 Introduction

The investigation of temporal or spatial dynamics for nonlinear Schrödinger

equations is an important and interesting subject, see, for example, [1-11,13-18,20]

for details. In particular, there are many papers which have paid more attention to

the dynamics of the following (2+1)-dimensional cubic nonlinear Schrödinger (NLS)

equation without dissipation

iut + αuxx + βuyy + γ|u|2u = 0, (1.1)

where u = u(x, y, t) is a complex-valued function, α, β, and γ are real constants, and

subscripts represent partial derivatives. As we know, the NLS equation is referred

to as an approximate model of the evolution of a nearly monochromatic wave of

small amplitude of pulse propagation in Langmuir waves in a plasma, optical fibers

and gravity waves on deep water with different values of parameters.
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Recently, modulational instability of many extended versions of the NLS equa-

tion with different dissipations have been investigated in [14,15,17]. In particular,

there is a nonlinear dissipative Schrödinger (DissNLS) equation as follows:

iut + (α− ia)uxx + (β − ib)uyy + (γ + ic)|u|2u+ idu = 0, (1.2)

where u = u(x, y, t) (x, y ∈ R) is a complex-valued function, α, β, γ, a, b, c and d are

real constants with a, b and c being all nonnegative, d represents dissipation. Note

that, this equation is regarded as a model of weakly nonlinear surface wave, and

it can also be regarded as a generalized version of the complex Ginzburg-Landau

equation.

Actually, modulational instability corresponds to temporal stability. However,

the investigation of traveling wave solutions also plays an important role in the

dynamics of nonlinear physical phenomena, see, for example, Zhang et al. [16], Feng

and Meng [19], Nguyen [21]. To my best, except for particular parameters, there

are no exact analytical solutions of (2+1)-dimensional NLS equation, so sometimes

one has to resort to computer numerical simulations in order to investigate the

dynamics of NLS, thus it is necessary to obtain exact solutions by certain analytic

technique. Therefore, in order to better understand the dynamical behavior of the

dissipative nonlinear Schrödinger equation (1.2), in this paper, we will focus on its

exact traveling wave solutions and their spatial stability.

The rest of this paper is outlined as follows. Section 2 contains two kinds of exact

amplitude traveling wave solutions obtained by the homogeneous balance method.

In Section 3, we study the stability of traveling wave solutions of NLS equation by

using the regular phase plane method.

Now, we introduce the homogenous balance method and use it to look for special

exact solutions of some nonlinear equations. Consider a general partial differential

equation

H(u, ux, ut, uxx, uyy, · · · ) = 0, (1.3)

where H is a polynomial function of its arguments, subscripts denote the partial

derivatives. We will solve (1.3) by the homogeneous balance method with the fol-

lowing four steps:

Step 1 Firstly, take

u = f (m+n)(φx)
m(φt)

n +
m+n−1∑
i+j=0

Aijf
(i+j)(φx)

i(φt)
j , (1.4)

where m and n are nonnegative integers, the functions f = f(φ) and φ = φ(x, t),

and the coefficients Aij are all to be determined. Substituting (1.4) into (1.3), the

integers m and n will be determined.


