
ITERATIVE POSITIVE SOLUTIONS FOR
SINGULAR RIEMANN-STIELTJES INTEGRAL

BOUNDARY VALUE PROBLEM∗†

Xiuli Lin‡, Zengqin Zhao
(School of Mathematical Sciences, Qufu Normal University, Shandong 273165, PR China)

Ann. of Appl. Math.
32:2(2016), 133-140

Abstract

By applying iterative technique, we obtain the existence of positive solu-
tions for a singular Riemann-Stieltjes integral boundary value problem in the
case that f(t, u) is non-increasing respect to u.
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1 Introduction

Problems with boundary conditions, especially Riemann-Stieltjes integral bound-

ary condition, have been studied in many papers (see [1-8] and the references there-

in). In [3], by applying monotone iterative technique, Mao and Zhao established a

sufficient condition for the existence of positive solutions for problem (1.1) :
−u′′(t) + k2u = f(t, u), t ∈ (0, 1),

u(0) = 0, u(1) =

∫ 1

0
u(t)dA(t),

(1.1)

where A is right continuous on [0, 1), left continuous at t = 1, and nondecreasing on

[0, 1), with A(0) = 0.
∫ 1
0 u(t)dA(t) denotes the Riemann-Stieltjes integral of u with

respect to A. k is a constant and f(t, u) is increasing with respect to u.
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In this paper, we consider the case that f(t, u) is non-increasing with respect to u,

and f(t, u) may be singular at u = 0, t = 0 (and/or t = 1). By searching an iterative

initial element, we construct a non-monotonic iterative sequence which has non-

decreasing and non-increasing subsequence to obtain the existence and uniqueness

of positive solutions in some set Q. Meanwhile, we also give an error estimate.

2 Preliminaries

The following conditions are assumed in this paper:

(S1) f : (0, 1)× (0,+∞) −→ [0,+∞) is continuous.

(S2) For (t, u) ∈ (0, 1)×(0,+∞), f is non-increasing respect to u and there exists

a constant λ ∈ (0, 1) such that for τ ∈ (0, 1],

f(t, τu) ≤ τ−λf(t, u). (2.1)

From (2.1), it is easy to see that if τ ∈ [1,+∞), then

f(t, τu) ≥ τ−λf(t, u). (2.2)

(S3) There exists a k > 0 such that sinh(k) >
∫ 1
0 sinh(k(1− t))dA(t).

Lemma 2.1[1] Assume that h∈C(0, 1) and (S3) holds. Then the following linear

boundary value problem
−u′′(t) + k2u = h(t), t ∈ (0, 1),

u(0) = 0, u(1) =

∫ 1

0
u(t)dA(t)

(2.3)

has a unique positive solution u expressed in the following form

u(t) =

∫ 1

0
F (t, s)h(s)ds,

where

F (t, s) = G(t, s) +
sinh(kt)

sinh(kt)−
∫ 1
0 sinh(kτ)dA(τ)

∫ 1

0
G(τ, s)dA(τ), t ∈ [0, 1], (2.4)

G(t, s) =


sinh(ks) sinh(k(1− t))

k sinh(k)
, 0 ≤ s ≤ t ≤ 1,

sinh(kt) sinh(k(1− s))

k sinh(k)
, 0 ≤ t ≤ s ≤ 1.

Remark 2.1 Assume that (S1), (S2) and (S3) hold. Then solutions for (1.1)

are equivalent to continuous solutions of the integral equation

u(t) =

∫ 1

0
F (t, s)f(s, u(s))ds,

where F (t, s) is defined by (2.4).


