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Abstract
In this paper, we prove the global existence of the weak solution to the vis-

cous quantum Navier-Stokes-Landau-Lifshitz-Maxwell equations in two-dimen-
sion for large data. The main techniques are the Faedo-Galerkin approximation
and weak compactness theory.
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1 Introduction

In studying the dispersive theory of magnetization of ferromagnets, we also con-

sider the viscous quantum of a fluid on motion under the Maxwell electric-magnetic

field, that is, the macroscopic motion of a fluid and the quantum effects and the

interactions between electrons in microscopic will be considered similarly.

In this paper we study the viscous quantum Navier-Stokes-Landau-Lifshitz-

Maxwell system (QNSLLM) in (0, T )× Ω:

∂tρ+ div(ρu) = ν∆ρ, (1.1)
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dt + u · ∇d+ α1d× (d× (∆d+B)) = α2d× (∆d+B), (1.3)

Et −∇×B = eρu, (1.4)

Bt +∇× E = −λm(dt + u · ∇d), (1.5)

∇ ·B = 0, |d(x, t)| = 1. (1.6)

Here we denote by Ω ⊂ R2 the two-dimensional 2D-periodic domain, that is, Ω =

{x = (x1, x2)| |xi| < D; i = 1, 2}. ρ and u represent the density and the velocity

field of the flow respectively. P is the pressure function. We consider the isentropic

case P = Aργ (A > 0 is a constant). d : Ω → S1, the unit sphere in R2, denotes

the magnetization field. E and B represent the electric field and the magnetic field

respectively. The physic constants m, e, ~ are positive and represent the mass,

the charge of the particle and Planck constants respectively. ν and µ are positive

viscosity constants. The positive constants λ, τ and β represent respectively the

competition between kinetic energy and potential energy, the relaxation time of

electron and microscopic elastic relaxation time for the molecular orientation field.

α2 is a positive constant, and α1 ≥ 0 is Gilbert damping coefficient. ∇· denotes the
divergence operator, and ∇d⊙∇d denotes the 2× 2 matrix whose (i, j)-the entry is

given by ∇id · ∇jd for 1 ≤ i, j ≤ 2. The expression
∆
√
ρ√
ρ can be interpreted as the

quantum Bohm potential.

Roughly speaking, system (1.1)-(1.6) is a coupling between the viscous isentrop-

ic quantum Navier-Stokes equations and Landau-Lifshitz-Maxwell equations. This

model can be used to describe the dispersive theory of magnetization of ferromagnets

with the electromagnetic field.

We call a function f(x) is a 2D-periodic if f(x + 2Dei) = f(x), i = 1, 2, where

(e1, e2) forms the unit orthogonal basis of R2, D > 0 is a constant.

For system (1.1)-(1.6), we impose the following initial conditions

ρ|t=0 = ρ0(x), u|t=0 = u0(x), E|t=0 = E0(x), d|t=0 = d0(x), B|t=0 = B0(x),

(1.7)

which satisfy that

ρ0(x) > 0,

|d0(x)| = 1, d0(x) ∈ H2(Ω), inf
x
d20 > 0, (1.8)

E0(x), B0(x) ∈ L2(Ω).

Furthermore, we always assume that ρ0(x), u0(x), d0(x), E0(x), B0(x) are 2D-periodic.

Firstly setting E = B = 0, d is a constant vector, and using a effective velocity

transformation [18] system (1.1)-(1.6) becomes the isentropic compressible quantum

Navier-Stokes equation (IQCNS). Set µ = 0, we get the isentropic compressible


