\mathbb{Z}_{3}-CONNECTIVITY OF 4-EDGE-CONNECTED TRIANGULAR GRAPHS* ${ }^{\dagger}$

Chuixiang Zhou ${ }^{\ddagger}$
(Center for Discrete Math., Fuzhou University, Fuzhou 350116, Fujian, PR China)

Abstract

A graph G is k-triangular if each of its edge is contained in at least k triangles. It is conjectured that every 4-edge-connected triangular graph admits a nowhere-zero 3 -flow. A triangle-path in a graph G is a sequence of distinct triangles $T_{1} T_{2} \cdots T_{k}$ in G such that for $1 \leq i \leq k-1,\left|E\left(T_{i}\right) \cap E\left(T_{i+1}\right)\right|=1$ and $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset$ if $j>i+1$. Two edges $e, e^{\prime} \in E(G)$ are triangularly connected if there is a triangle-path $T_{1}, T_{2}, \cdots, T_{k}$ in G such that $e \in E\left(T_{1}\right)$ and $e^{\prime} \in E\left(T_{k}\right)$. Two edges $e, e^{\prime} \in E(G)$ are equivalent if they are the same, parallel or triangularly connected. It is easy to see that this is an equivalent relation. Each equivalent class is called a triangularly connected component. In this paper, we prove that every 4 -edge-connected triangular graph G is \mathbb{Z}_{3}-connected, unless it has a triangularly connected component which is not \mathbb{Z}_{3}-connected but admits a nowhere-zero 3-flow.

Keywords \mathbb{Z}_{3}-connected; nowhere-zero 3-flow; triangular graphs
2000 Mathematics Subject Classification 05C21

1 Introduction

We follow the notations and terminology of [1] except otherwise stated.
The concept of k-triangular graphs was introduced by Broersma and Veldman in [2]. A graph is k-triangular if each of its edge is contained in at least k triangles. A 1-triangular graph is also referred to as a triangular graph.

A triangle-path in a graph G is a sequence of distinct triangles $T_{1} T_{2} \cdots T_{k}$ in G such that for $1 \leq i \leq k-1,\left|E\left(T_{i}\right) \cap E\left(T_{i+1}\right)\right|=1$ and $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset$ if $j>i+1$. Two edges $e, e^{\prime} \in E(G)$ are triangularly connected if there is a trianglepath $T_{1}, T_{2}, \cdots, T_{k}$ in G such that $e \in E\left(T_{1}\right)$ and $e^{\prime} \in E\left(T_{k}\right)$. Two edges $e, e^{\prime} \in E(G)$ are equivalent if they are the same, parallel or triangularly connected. It is easy to see that this is an equivalent relation. Each equivalent class is called a triangularly connected component. A graph is triangularly connected if and only if it has only one triangularly connected component.

[^0]Let A be a nontrivial additive Abelian group and $A^{*}=A-\{0\}$. Let G be a graph with an arbitrary orientation. For any $v \in V(G)$, we denote the set of arcs with tails at v by $E^{+}(v)$ and heads at v by $E^{-}(v)$. Following the definitions in [6], we give

$$
F(G, A)=\{f \mid f: E(G) \rightarrow A\} \quad \text { and } \quad F^{*}(G, A)=\left\{f \mid f: E(G) \rightarrow A^{*}\right\} .
$$

For each $f \in F(G, A)$, the boundary of f is a function $\partial f: V(G) \rightarrow A$ defined by

$$
\partial f(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e),
$$

where the symbol " \sum " refers to the addition in A. We define

$$
Z(G, A)=\left\{b \mid b: V(G) \rightarrow A \text { with } \sum_{v \in V(G)} b(v)=0\right\} .
$$

An A-nowhere-zero flow (abbreviated as A-NZF) in G is a function $f \in F^{*}(G, A)$ such that $\partial f \equiv 0$. For any $b \in Z(G, A)$, a function $f \in F^{*}(G, A)$, with $\partial f=b$ is called an (A, b)-NZF. A graph G is A-connected, if for every $b \in Z(G, A)$, there exists an (A, b)-NZF. For an Abelian group A, let $\langle A\rangle$ denote the family of graphs that are A-connected. It has been observed that the A-connectivity of G is independent of the orientation of G, so we usually give G an arbitrary orientation.

The nowhere-zero flow problems are introduced by Tutte [11] and surveyed by Jaeger [7] and Zhang [13]. The following three conjectures are proposed by Tutte.

Conjecture 1.1 Every bridgeless graph admits a \mathbb{Z}_{5}-NZF.
Conjecture 1.2 Every bridgeless graph without a Peterson minor admits a \mathbb{Z}_{4}-NZF.

Conjecture 1.3 Every 4-edge-connected graph admits a \mathbb{Z}_{3}-NZF.
These three problems remain open today. As a generalization of A-NZF, Jaeger [8] introduced the concept of A-connectivity and proposed the following conjecture:

Conjecture 1.4 Every 5 -edge-connected graph is \mathbb{Z}_{3}-connected.
For triangular graphs, Xu and Zhang [12] proposed a weaker version of Conjecture 1.3:

Conjecture 1.5 Every 4-edge-connected triangular graph has a \mathbb{Z}_{3}-NZF.
It was further asked (Problem 1 in [7]) whether every 4 -edge-connected triangular graph is \mathbb{Z}_{3}-connected. This was shown in the negative in [7].

In [4], Hou et al. proved that every 4 -edge-connected 2-triangular graph is \mathbb{Z}_{3} connected, and further they pointed out that 2-triangularity is best possible and a class of 4-edge-connected triangular graphs which are not \mathbb{Z}_{3}-connected was constructed. In these counterexamples, each of their triangularly connected component has at least one vertex of degree 2 .

[^0]: *The work was supported by JK2015004.
 ${ }^{\dagger}$ Manuscript received August 23, 2017
 ${ }^{\ddagger}$ Corresponding author. E-mail: cxzhou@fzu.edu.cn

