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Abstract

Let S(R2) be the class of all infinitely differential functions which, as well as
their derivatives, are rapidly decreasing on R2. Here we define a kind of semi-
norms which is equivalent to the usual family of semi-norms on the Schwartz
space S(R2).
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1 Introduction
In the recent years, the Schwartz space as well as their application are concerned

in many publication ([1-5]). In this paper, we first give the usual family of semi-

norms on the Schwartz space S(R2). A new family of semi-norms is defined, which

is based on the operators we constructed.

Using the new family of semi-norms, we can consider the method to discuss the

Schwartz space in terms of the sequential theory.

Let I2+ denote the set of all two-tuple of non-negative integers. For α ∈ I2+, let

|α| = α1 + α2. (1.1)

For a multi-index α and x ∈ R2, let

xα = xα1
1 xα2

2 , Dα =
∂|α|

∂xα1
1 ∂xα2

2

. (1.2)

The Schwartz space S(R2) is defined to be the class of all infinitely differentiable
complex-valued functions φ on R2 such that

lim
|x|→∞

|xαDβφ| = 0, (1.3)

for all multi-indices α and β. The space S(R2) is closed for the differential operators

and multiplication by polynomials.
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2 Some Definitions
In this section, we introduce some definitions. Let R2 be the 2-dimensional

Euclidean space.

Definition 2.1 A semi-norm on a vector space V is a map ρ : V → [0,∞)

satisfying

(i) ρ(u+ v) ≤ ρ(u) + ρ(v) for u, v ∈ V ;

(ii) ρ(au) = |a|ρ(u) for a ∈ C(or R).

A family of semi-norms {ρα}α∈A is said to be separate points if

(iii) ρα(u) = 0 for all α ∈ A implies u = 0,

where α = (α1, α2) are two-tuple of non-negative integers ([1]).

Definition 2.2 Let f ∈ S(R2) and ∥ · ∥α,β,∞ be defined by

∥f∥α,β,∞ = ∥xαDβf∥∞ =
∥∥∥xα1

1 xα2
2

∂|β|

∂xβ1
1 ∂xβ2

2

f
∥∥∥
∞

= sup
x1∈R

sup
x2∈R

∣∣∣xα1
1 xα2

2

∂(β1+β2)

∂xβ1
1 ∂xβ2

2

f
∣∣∣. (2.1)

Then {∥ · ∥α,β,∞}α,β∈I2+ is the usual family of semi-norms on S(R2).

Definition 2.3 Let V be a vector space and u ∈ V . Let {ρα}α∈A and {db}b∈B
be two families of semi-norms on a vector space V where A and B are some index

sets. The families of semi-norms are equivalent if and only if they satisfy:

(i) For each a ∈ A, there exist b1, b2 ∈ B and C > 0, such that

ρa(u) ≤ C
(
db1(u) + db2(u)

)
;

(ii) for each b ∈ B, there exist a1, a2 ∈ A and C ′ > 0 such that

db(u) ≤ C ′(ρa1(u) + ρa2(u)
)
.

Definition 2.4 A family of semi-norms {ρα}α∈A on a vector space V is called

directed if for α, β ∈ A and u ∈ V , there exist γ ∈ A and C > 0 such that

ρα(u) + ρβ(u) ≤ Cργ(u). (2.2)

Definition 2.5 Let f ∈ S(R2) and ∥ · ∥α,β,2 be define by

∥f∥α,β,2 = ∥xαDβf∥2 =
(∫

R2

|xαDβf(x)|2dx
) 1

2
.

Then {∥ · ∥α,β,2}α,β∈I2+ is the usual family of semi-norms on S(R2).

Definition 2.6 Hölder inequality: Let E be a measurable set of Lebesgue, x(t)

and y(t) be measurable functions in E. Then p and q are positive numbers such

that 1
p + 1

q = 1, then


