SOLUTION FOR TWO-POINT BOUNDARY VALUE PROBLEM OF THE SEMILINEAR FRACTIONAL DIFFERENTIAL EQUATION* ${ }^{*}$

Caixia Guo \ddagger Shugui Kang, Yaqiong Cui, Huiqin Chen
(School of Math. and Computer Sciences, Shanxi Datong University, Datong 037009, Shanxi, PR China)

Abstract

In this paper, we establish the existence result of solution and positive solution for two-point boundary value problem of a semilinear fractional differential equation by using the Leray-Schauder fixed-point theorem. The discussion is based on the system of integral equations on a bounded region.

Keywords boundary value problem; Green's function; Leray-Schauder fixed point theorem; system of integral equations

2000 Mathematics Subject Classification 34A08

1 Introduction

Fractional differential equations have received increasing attention during the past decades. It has attracted a lot of attention of researchers to promote the continuous development of methods, theories and applications in the field of small area estimation (see [1-3]). Fractional derivative is divided into two categories: standard Riemann-Liouville derivative and Caputo fractional derivative.

The aim of this paper is to study the existence result of solution and positive solution for the following two-point boundary value problem of the semilinear fractional differential equation

$$
\left\{\begin{array}{l}
D^{\alpha} u(t)+f\left(t, u(t), D^{\alpha-1} u(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \tag{1.1}\\
u(0)=0, \quad u(1)=B, \quad D^{\alpha-1} u(0)=C,
\end{array}\right.
$$

where $2<\alpha \leqslant 3$ and A, B, C are real numbers, D^{α} is the standard RiemannLiouville derivative, and $f:[0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous on its domain. Such a

[^0]nonlinearity term $f\left(t, u(t), D^{\alpha-1} u(t)\right)$ has been studied widely in [6,7]. In [6], by means of the Schauder fixed point theorem and the Banach contraction principle the authors investigated the existence and uniqueness of solutions for a class of nonlinear multi-point boundary value problems for fractional differential equations
\[

\left\{$$
\begin{array}{l}
D^{\alpha} u(t)+f\left(t, u(t), D^{\beta} u(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \\
u(0)=0, \quad D^{\beta} u(1)-\sum_{i=1}^{m-2} \xi_{i} D^{\beta} u\left(\xi_{i}\right)=u_{0} .
\end{array}
$$\right.
\]

In [7], by means of a fixed point theorem on a cone, the authors investigated the existence of positive solutions for the following singular fractional boundary value problem

$$
\left\{\begin{array}{l}
D^{\alpha} u(t)+f\left(t, u(t), D^{\mu} u(t)\right)=0, \quad 0 \leqslant t \leqslant 1, \\
u(0)=u(1)=0 .
\end{array}\right.
$$

The difference between [6] and [7], the system of integral equations is adopted skillfully in this paper. In the literature of $[8], A=0$ is the special case of this paper.

2 Preliminaries

For convenience, we present here the necessary definitions and some lemmas from fractional calculus theory.

Definition 2.1 ${ }^{[4]}$ The Riemann-Liouville fractional integral of order $\alpha>0$ of a function $f:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
I_{0^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) \mathrm{d} s
$$

provided the right side is pointwise defined on $(0, \infty)$.
Definition 2.2 ${ }^{[4]}$ The Riemann-Liouville fractional derivative of order $\alpha>0$ of a continuous function $f:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
D_{0^{+}}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)^{n} \int_{0}^{t} \frac{f(s)}{(t-s)^{\alpha-n+1}} \mathrm{~d} s
$$

where $n=[\alpha]+1,[\alpha]$ denotes the integer part of the real number α, provided the right side integral is pointwise defined on $[0,1)$.

Lemma 2.1 ${ }^{[4]}$ Let $\alpha>0$. If we assume $u \in C(0,1) \cap L(0,1)$, then the fractional differential equation

$$
D_{0^{+}}^{\alpha} u(t)=0
$$

has $u(t)=C_{1} t^{\alpha-1}+C_{2} t^{\alpha-2}+\cdots+C_{N} t^{\alpha-N}, C_{i} \in \mathbb{R}, i=1,2, \cdots, N$, which is a unique solution, where N is the smallest integer greater than or equal to α.

Lemma 2.2 ${ }^{[4]}$ Assume that $u \in C(0,1) \cap L(0,1)$ with a fractional derivative of order $\alpha>0$ that belongs to $C(0,1) \cap L(0,1)$. Then

[^0]: *This work was supported by the Natural Science Foundation of China (No.11271235) and the Foundation of Datong University (2014Q10).
 ${ }^{\dagger}$ Manuscript received May 20, 2016; Revised November 9, 2016
 ${ }^{\ddagger}$ Corresponding author. E-mail: iris-gcx@163.com

