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Abstract

The paper deals with the strongly damped nonlinear wave equation of
Kirchhoff type. The existence of a global attractor is proven by using the de-
composition, and moreover, the structure of the global attractor is established.
Our results improve the previous results.
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1 Introduction

The nonlinear evolution equations have been investigated by many authors. We

consider the following problem

utt −M(∥∇u∥2)△u−△ut + f(ut) + g(u) = h(x), x ∈ Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, u|∂Ω = 0,
(1)

where M(s) = 1+ s
m
2 , m ≥ 2, Ω ⊂ R3 is a bounded domain with smooth boundary

∂Ω. The assumptions on f(ut), g(u) and h(x) will be specified below.

When N = 1, such an equation without the dissipative term △ut is introduced

to describe the vibration of an elastic string. The original equation is

ρhutt + δut =
{
p0 +

Eh

2L

∫ L

0

(∂u
∂x

)2
dx

}∂2u

∂x2
+ f,

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space coor-
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dinate x and the time t, E is the Young modulus, ρ is the mass density, h is the

cross-section area, L is the length, p0 is the initial axial tension, δ is the resistance

modulus, and f is the external force. When δ = f = 0, the equation is firstly

introduced by Kirchhoff [6].

Equation (1) is also mathematically interesting and has been extensively inves-

tigated by many authors. By using asymptotic compactness the authors dealt with

some absorbing properties of global attractor of the Kirchhoff type equation

utt −M(∥∇u∥2)△u−△ut + g(x, u) = h(x),

where g does not exhibit a critical growth [8].

The paper [13] studied the longtime behavior of the Kirchhoff type equation

utt −M(∥∇u∥2)△u−△ut + u+ ut + g(x, u) = h(x)

on Rn. It showed that the related continuous semigroup possesses a global attractor

which is connected and has finite fractal and Hausdorff dimensions.

In [9] by using two half invariant sets, the author proved the existence and some

absorbing properties of an attractor in a local sense for the initial boundary value

problem of a quasilinear wave equation of Kirchhoff type

utt − (1 + ∥∇u∥22)△u+ ut + g(x, u) = h(x).

Nonlinear evolution equations have been investigated by many authors, see [1-

5,8-14], but, there are relatively few results on the global attractor for problem (1),

where the functions f and g exhibit a critical growth. The problem considered in this

manuscript is more difficult to be dealt with than those considered in [8,9] because

the difficulty is caused not only by the critical growth of f and g but also by the

nonlinearity of M . The aim of this paper is to improve the main results of [8,9],

that is, by utilizing the decomposition idea [10] we prove the existence of a global

attractor of (1). Still, the structure of the global attractor is established.

2 Preliminary

We first introduce the following notations:

Lp = Lp(Ω), Hk = Hk(Ω), H1
0 = H1

0 (Ω), ∥ · ∥p = ∥ · ∥Lp , ∥ · ∥ = ∥ · ∥L2 ,

with p ≥ 1. The notations (·, ·) and [·, ·] will be used as the L2-inner product and the

duality pairing between dual spaces respectively. For brevity, we use the same letter

C to denote different positive constants, and C(· · ·) to denote positive constants

depending on the quantities appearing in the parenthesis. In L2 we introduce the

operator −△ with the domain D(−△) = H2∩H1
0 , where −△ is the Laplace operator

in Ω with the Dirichlet boundary condition. Below we denote by ek the orthonormal


