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Abstract

Let H = (V,E) be a k-uniform hypergraph. For 1 ≤ s ≤ k − 1, an s-path

P
(k,s)
n of length n in H is a sequence of distinct vertices v1, v2, · · · , vs+n(k−s)

such that {v1+i(k−s), · · · , vs+(i+1)(k−s)} is an edge of H for each 0 ≤ i ≤ n−1.

In this paper, we prove that R(P
(3s,s)
n , P

(3s,s)
3 ) = (2n + 1)s + 1 for n ≥ 3.
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1 Introduction

A k-uniform hypergraph H with vertex V is a collection of k-element subset of V .

We write K
(k)
n for the complete k-uniform hypergraph on an n-element vertex set.

For given two k-uniform hypergraphs H1 and H2, the Ramsey number R(H1,H2)

is defined to be the minimum value of N such that each red-blue coloring of edges

of K
(k)
N contains either a monochromatic red copy of H1, or a monochromatic blue

copy of H2. Let H be a k-uniform hypergraph. For each 1 ≤ s ≤ k − 1, an s-

path P
(k,s)
n of length n in H is a sequence of distinct vertices v1, v2, · · · , vs+n(k−s)

such that {v1+i(k−s), · · · , vs+(i+1)(k−s)} is an edge ei+1 of H for each 0 ≤ i ≤ n −
1. We also say that the edges e1, e2, · · · , en form a path P

(k,s)
n . Similarly, an s-

cycle C
(k,s)
n of length n in H is a sequence of vertices v1, v2, · · · , vs+n(k−s) such that

{v1+i(k−s), · · · , vs+(i+1)(k−s)} is an edge of H for each 0 ≤ i ≤ n−1, v1, v2, · · · , vn(k−s)

are distinct, and vj+n(k−s) = vj for each 1 ≤ j ≤ s.

When k = 2 and s = 1, a classical result by Gerencsér and Gyárfás [4] is

R(Pn, Pm) = n+⌊m+1
2 ⌋ for n ≥ m ≥ 1; it is also known from [2,3] that R(Pn, Cm) =

R(Pn, Pm) = n+ m
2 for n ≥ m with m being even. Recently, the hypergraph Ramsey

numbers also attract lots of attention. When s = 1, Haxell et al. [5] first determined

that the asymptotic values of R(P
(3,1)
n , P

(3,1)
n ), R(P

(3,1)
n , C

(3,1)
n ) and R(C

(3,1)
n , C

(3,1)
n )
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are 5n
2 . Later, Gyárfás, Sárközy and Szemenrédi [6] extended this result to all

k ≥ 3. Namely, they proved that R(P
(k,1)
n , P

(k,1)
n ), R(P

(k,1)
n , C

(k,1)
n ), R(C

(k,1)
n , C

(k,1)
n )

are asymptotically equal to (2k−1)n
2 . There are some exact results on short paths

and cycles. Gyárfás and Raeisi [7] proved that

R(P
(k,1)
3 , P

(k,1)
3 ) = R(P

(k,1)
3 , C

(k,1)
3 ) = R(C

(k,1)
3 , C

(k,1)
3 ) + 1 = 3k − 1

and

R(P
(k,1)
4 , P

(k,1)
4 ) = R(P

(k,1)
4 , C

(k,1)
4 ) = R(C

(k,1)
4 , C

(k,1)
4 ) + 1 = 4k − 2.

Recently, Omidi and Shahsiah [8] raised the conjecture that

R(P (k,1)
n , P (k,1)

m ) = R(P (k,1)
n , C(k,1)

m ) = R(C(k,1)
n , C(k,1)

m ) + 1 = (k − 1)n +
m + 1

2

is equivalent to

R(C(k,1)
n , C(k,1)

m ) + 1 = (k − 1)n +
m− 1

2
for k = 3.

Later, the authors showed that for fixed m ≥ 3 and k ≥ 4 the former is equivalent

to (only) the last equality of the latter for any 2m ≥ n ≥ m ≥ 3. More precisely,

they proved that for fixed m ≥ 3 and k ≥ 4, the latter is true for each n ≥ m if and

only if it is true for the former for 2m ≥ n ≥ m ≥ 3. In 2016, Peng [1] proved that

for s ≥ 1 and n ≥ 3,

R(P (2s,s)
n , P

(2s,s)
3 ) = (n + 1)s + 1;

and for s ≥ 1 and n ≥ 4,

R(P (2s,s)
n , P

(2s,s)
4 ) = (n + 1)s + 1.

A general lower bound is as follows.

Lemma 1[5] For each n ≥ m ≥ 1 and 1 ≤ s ≤ k/2, we have

R(P (k,s)
n , P (k,s)

m ) > s + n(k − s) +
⌊m + 1

2

⌋
− 2.

In this paper, we mainly consider the case of k = 3s. In order to avoid the

excessive use of superscripts, we use the simpler notations

R(P (3s,s)
n , P (3s,s)

m ) = R(Pn, Pm) and P (3s,s)
n = Pn.

In this note, we have the following result.

Theorem 1 For each s ≥ 1 and n ≥ 3, R(Pn, P3) = (2n + 1)s + 1.


