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Abstract
Let H = (V, E) be a k-uniform hypergraph. For 1 < s < k — 1, an s-path
Pék’s) of length n in H is a sequence of distinct vertices vi,va, Vg yn(k—s)
such that {v1i(k—s), " s Vst (i41)(k—s)} 15 an edge of H for each 0 <i <n—1.

In this paper, we prove that R(PS%, PP**)) = (2n + 1)s + 1 for n > 3.
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1 Introduction

A k-uniform hypergraph H with vertex V' is a collection of k-element subset of V.
We write K,(Lk) for the complete k-uniform hypergraph on an n-element vertex set.
For given two k-uniform hypergraphs H; and Hsg, the Ramsey number R(H;p, Hs)
is defined to be the minimum value of NV such that each red-blue coloring of edges
of K](\I;) contains either a monochromatic red copy of Hy, or a monochromatic blue
copy of Ho. Let H be a k-uniform hypergraph. For each 1 < s < k — 1, an s-
path P,sk’s) of length n in H is a sequence of distinct vertices v1,v2,+ , Usyp(k—s)
such that {v1i(k—s), "+ » Vst (i+1)(k—s)} 1 an edge e;11 of H for each 0 < i < n —
1. We also say that the edges ej,es, - ,e, form a path P,&’W. Similarly, an s-
cycle Cﬁk’s) of length n in H is a sequence of vertices v1,v2, "+, Vs (k—s) Such that
{V14itk—s)s " > Vs (i41) (k—s) } 18 an edge of H for each 0 <7 <n—1,v1,v2, -+ , Up(—s)
are distinct, and v; s = vj for each 1 < j <'s.

When k£ = 2 and s = 1, a classical result by Gerencsér and Gyarfas [4] is
R(Py, Py) = n+ ™| for n > m > 1; it is also known from [2,3] that R(P,, Cy,) =
R(Py, Py) = n+ g for n > m with m being even. Recently, the hypergraph Ramsey
numbers also attract lots of attention. When s = 1, Haxell et al. [5] first determined
that the asymptotic values of R(P,(L?”l), P7(13’1)), R(ng’l) 07(13,1)) and R(Cr(f’l) C’S”l))
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are 57” Later, Gyarfds, Sarkozy and Szemenrédi [6] extended this result to all

k > 3. Namely, they proved that R(P,Sk’l), ng’l)), R(P,(Lk’l), CT(Lk’l)), R(Cﬁk’l), C’T(Lk’l))

(2k—1)n
2

are asymptotically equal to . There are some exact results on short paths

and cycles. Gyarfas and Raeisi [7] proved that

R(Pg(k,l)’Pg(k,l)) _ R(Pék’l),(]ék’l)) _ R(Cék,1)7cék,1)) S1—3k-1

and
R(P4(k,1)7p4(k,1)) _ R(Pik,l)’cik,l)) _ R(C’ik’l), ik’l)) Gl —dk—2.

Recently, Omidi and Shahsiah [8] raised the conjecture that

R(pFED pkl)y = g(pHFD k) = R(CWD kDY 41 = (k—1)n + mTH

is equivalent to
-1
ROV, V) +1 = (k= 1n+ "~ for k=3,

Later, the authors showed that for fixed m > 3 and k > 4 the former is equivalent
to (only) the last equality of the latter for any 2m > n > m > 3. More precisely,
they proved that for fixed m > 3 and k > 4, the latter is true for each n > m if and
only if it is true for the former for 2m > n > m > 3. In 2016, Peng [1] proved that
for s >1and n > 3,

R(PP®) PPy = (n 4 1)s + 1;

and for s > 1 and n > 4,
R(PP®) PPy = (n 4 1)s + 1,

A general lower bound is as follows.
Lemma 15 For eachn>m >1and1<s< k/2, we have

1
ﬂj _9.

R(PFD phs)y > g4 n(k—s)+ { ;

In this paper, we mainly consider the case of k& = 3s. In order to avoid the
excessive use of superscripts, we use the simpler notations

R(PT(L?;S,S)?PT(Y?S,S)) — R(Pmpm) and PT(Lgs’S) —P,

In this note, we have the following result.
Theorem 1 For each s > 1 andn >3, R(P,,P3) = (2n+ 1)s + 1.



