RAMSEY NUMBER OF HYPERGRAPH PATHS*

Erxiong Liu ${ }^{\dagger}$
(College of Math. and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, PR China)

Abstract

Let $H=(V, E)$ be a k-uniform hypergraph. For $1 \leq s \leq k-1$, an s-path $P_{n}^{(k, s)}$ of length n in H is a sequence of distinct vertices $v_{1}, v_{2}, \cdots, v_{s+n(k-s)}$ such that $\left\{v_{1+i(k-s)}, \cdots, v_{s+(i+1)(k-s)}\right\}$ is an edge of H for each $0 \leq i \leq n-1$. In this paper, we prove that $R\left(P_{n}^{(3 s, s)}, P_{3}^{(3 s, s)}\right)=(2 n+1) s+1$ for $n \geq 3$.

Keywords hypergraph Ramsey number; path
2000 Mathematics Subject Classification 05C65

1 Introduction

A k-uniform hypergraph H with vertex V is a collection of k-element subset of V. We write $K_{n}^{(k)}$ for the complete k-uniform hypergraph on an n-element vertex set. For given two k-uniform hypergraphs H_{1} and H_{2}, the Ramsey number $R\left(H_{1}, H_{2}\right)$ is defined to be the minimum value of N such that each red-blue coloring of edges of $K_{N}^{(k)}$ contains either a monochromatic red copy of H_{1}, or a monochromatic blue copy of H_{2}. Let H be a k-uniform hypergraph. For each $1 \leq s \leq k-1$, an s path $P_{n}^{(k, s)}$ of length n in H is a sequence of distinct vertices $v_{1}, v_{2}, \cdots, v_{s+n(k-s)}$ such that $\left\{v_{1+i(k-s)}, \cdots, v_{s+(i+1)(k-s)}\right\}$ is an edge e_{i+1} of H for each $0 \leq i \leq n-$ 1. We also say that the edges $e_{1}, e_{2}, \cdots, e_{n}$ form a path $P_{n}^{(k, s)}$. Similarly, an s cycle $C_{n}^{(k, s)}$ of length n in H is a sequence of vertices $v_{1}, v_{2}, \cdots, v_{s+n(k-s)}$ such that $\left\{v_{1+i(k-s)}, \cdots, v_{s+(i+1)(k-s)}\right\}$ is an edge of H for each $0 \leq i \leq n-1, v_{1}, v_{2}, \cdots, v_{n(k-s)}$ are distinct, and $v_{j+n(k-s)}=v_{j}$ for each $1 \leq j \leq s$.

When $k=2$ and $s=1$, a classical result by Gerencsér and Gyárfás [4] is $R\left(P_{n}, P_{m}\right)=n+\left\lfloor\frac{m+1}{2}\right\rfloor$ for $n \geq m \geq 1$; it is also known from $[2,3]$ that $R\left(P_{n}, C_{m}\right)=$ $R\left(P_{n}, P_{m}\right)=n+\frac{m}{2}$ for $n \geq m$ with m being even. Recently, the hypergraph Ramsey numbers also attract lots of attention. When $s=1$, Haxell et al. [5] first determined that the asymptotic values of $R\left(P_{n}^{(3,1)}, P_{n}^{(3,1)}\right), R\left(P_{n}^{(3,1)}, C_{n}^{(3,1)}\right)$ and $R\left(C_{n}^{(3,1)}, C_{n}^{(3,1)}\right)$

[^0]are $\frac{5 n}{2}$. Later, Gyárfás, Sárközy and Szemenrédi [6] extended this result to all $k \geq 3$. Namely, they proved that $R\left(P_{n}^{(k, 1)}, P_{n}^{(k, 1)}\right), R\left(P_{n}^{(k, 1)}, C_{n}^{(k, 1)}\right), R\left(C_{n}^{(k, 1)}, C_{n}^{(k, 1)}\right)$ are asymptotically equal to $\frac{(2 k-1) n}{2}$. There are some exact results on short paths and cycles. Gyárfás and Raeisi [7] proved that
$$
R\left(P_{3}^{(k, 1)}, P_{3}^{(k, 1)}\right)=R\left(P_{3}^{(k, 1)}, C_{3}^{(k, 1)}\right)=R\left(C_{3}^{(k, 1)}, C_{3}^{(k, 1)}\right)+1=3 k-1
$$
and
$$
R\left(P_{4}^{(k, 1)}, P_{4}^{(k, 1)}\right)=R\left(P_{4}^{(k, 1)}, C_{4}^{(k, 1)}\right)=R\left(C_{4}^{(k, 1)}, C_{4}^{(k, 1)}\right)+1=4 k-2 .
$$

Recently, Omidi and Shahsiah [8] raised the conjecture that

$$
R\left(P_{n}^{(k, 1)}, P_{m}^{(k, 1)}\right)=R\left(P_{n}^{(k, 1)}, C_{m}^{(k, 1)}\right)=R\left(C_{n}^{(k, 1)}, C_{m}^{(k, 1)}\right)+1=(k-1) n+\frac{m+1}{2}
$$

is equivalent to

$$
R\left(C_{n}^{(k, 1)}, C_{m}^{(k, 1)}\right)+1=(k-1) n+\frac{m-1}{2} \quad \text { for } k=3 .
$$

Later, the authors showed that for fixed $m \geq 3$ and $k \geq 4$ the former is equivalent to (only) the last equality of the latter for any $2 m \geq n \geq m \geq 3$. More precisely, they proved that for fixed $m \geq 3$ and $k \geq 4$, the latter is true for each $n \geq m$ if and only if it is true for the former for $2 m \geq n \geq m \geq 3$. In 2016, Peng [1] proved that for $s \geq 1$ and $n \geq 3$,

$$
R\left(P_{n}^{(2 s, s)}, P_{3}^{(2 s, s)}\right)=(n+1) s+1 ;
$$

and for $s \geq 1$ and $n \geq 4$,

$$
R\left(P_{n}^{(2 s, s)}, P_{4}^{(2 s, s)}\right)=(n+1) s+1 .
$$

A general lower bound is as follows.
Lemma $1^{[5]}$ For each $n \geq m \geq 1$ and $1 \leq s \leq k / 2$, we have

$$
R\left(P_{n}^{(k, s)}, P_{m}^{(k, s)}\right)>s+n(k-s)+\left\lfloor\frac{m+1}{2}\right\rfloor-2 .
$$

In this paper, we mainly consider the case of $k=3 s$. In order to avoid the excessive use of superscripts, we use the simpler notations

$$
R\left(P_{n}^{(3 s, s)}, P_{m}^{(3 s, s)}\right)=R\left(P_{n}, P_{m}\right) \quad \text { and } \quad P_{n}^{(3 s, s)}=P_{n} .
$$

In this note, we have the following result.
Theorem 1 For each $s \geq 1$ and $n \geq 3, R\left(P_{n}, P_{3}\right)=(2 n+1) s+1$.

[^0]: *Manuscript received July 23, 2018; Revised September 30, 2018
 ${ }^{\dagger}$ Corresponding author. E-mail: 1591216230@qq.com

