THE BOUNDS ABOUT THE WHEEL-WHEEL RAMSEY NUMBERS*

Lili Shen \dagger Xianzhang Wu
(College of Math. and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, PR China)

Abstract

In this paper, we determine the bounds about Ramsey number $R\left(W_{m}, W_{n}\right)$, where W_{i} is a graph obtained from a cycle C_{i} and an additional vertex by joining it to every vertex of the cycle C_{i}. We prove that $3 m+1 \leq R\left(W_{m}, W_{n}\right) \leq$ $8 m-3$ for odd $n, m \geq n \geq 3, m \geq 5$, and $2 m+1 \leq R\left(W_{m}, W_{n}\right) \leq 7 m-2$ for even n and $m \geq n+502$. Especially, if m is sufficiently large and $n=3$, we have $R\left(W_{m}, W_{3}\right)=3 m+1$.

Keywords Ramsey number; wheel; bounds
2000 Mathematics Subject Classification 05C55

1 Introduction

Throughout the paper, all graphs considered are undirected, finite and contain neither loops nor multiple edges. For given graphs G, H, the Ramsey number, denoted by $R(G, H)$, is defined to be the smallest integer N such that in any edgecoloring of complete graph K_{N} by colors red and blue, there exists either a red G or a blue H. A wheel W_{m} is a graph obtained from C_{m} and an additional vertex by joining it to every vertex of C_{m}. For a graph H and a vertex $x \in H$, define $N_{H}(x)$ as the subgraph induced by all vertices adjacent to x in H, and $c(H), g(H)$ denote the lengths of a longest and shortest cycle of H. A graph H is called weakly pancyclic if it contains cycles of every length between $g(H)$ and $c(H)$. Let $\chi(H)$ be the chromatic number of H, that is, the smallest number needed to color the vertices of H so that no pair of adjacent vertices have the same color, and $\sigma(H)$ be the size of the smallest color class among all proper $\chi(H)$-colorings of H.

There is a famous lower bound of $R(G, H)$ observed by Burr [3] as follows

$$
R(G, H) \geq(\chi(H)-1)(|G|-1)+\sigma(H) .
$$

If $R(G, H)$ is equal to this bound, we say that G is H-good.

[^0]For Ramsey numbers about wheels, Surahmat et al. [10] proved that F_{n} is $W_{3}-$ good for $n \geq 3$ where F_{n} consists of n triangles sharing exactly one common vertex. Hendry calculated $R\left(W_{3}, W_{4}\right)=17$ in [7] and $R\left(W_{4}, W_{4}\right)=15$ in [8]. Faudree and Mckay [6] proved the value of $R\left(W_{m}, W_{5}\right)$ for $m=3,4,5$, and $R\left(W_{5}, W_{3}\right)=19$. Yanbo Zhang et al. [12] obtained the exact value of $R\left(F_{n}, W_{m}\right)$ for odd $m \geq 3$, $n \geq(5 m+3) / 4$ and the exact value of $R\left(T_{n}, W_{m}\right)$ for every ES-tree T_{n} odd $m \geq 3$, $n \geq m-2$. Also [11] proved that

$$
R\left(W_{m}, W_{4}\right)= \begin{cases}2 m+3 & \text { for odd } m \geq 133 \\ 2 m+2 & \text { for even } m \geq 134\end{cases}
$$

Motivated by the above works, in this paper, we shall consider the upper bound of the wheel-wheel Ramsey number $R\left(W_{m}, W_{n}\right)$. The main results are as follows.

Theorem 1 (i) If n is odd, $m \geq n \geq 3$ and $m \geq 5$, then

$$
3 m+1 \leq R\left(W_{m}, W_{n}\right) \leq 8 m-3 .
$$

(ii) If n is even, $m \geq n+502$, then

$$
2 m+1 \leq R\left(W_{m}, W_{n}\right) \leq 7 m-2 .
$$

2 The Preliminary Lemmas

In order to establish the main results, we introduce some useful lemmas at first.
Lemma $1^{[4]}$ Every nonbipartite graph G of order n with $\delta(G) \geq(n+2) / 3$ is weakly pancyclic with $g(G)=3$ or 4 .

Lemma $2^{[1]}$ Let G be a graph with $\delta(G) \geq 2$. Then $c(G) \geq \delta(G)+1$. Moreover, if $\delta(G) \geq|G| / 2$, then G has a Hamilton cycle.

Lemma $3^{[2]} \quad R\left(W_{m}, C_{3}\right)=2 m+1$ for $m \geq 5$.
Lemma $4^{[5]} R\left(C_{m}, W_{n}\right)=3 m-2$ for odd $n, m \geq n \geq 3$ and $(m, n) \neq(3,3)$.
Lemma $5^{[13]} \quad R\left(C_{m}, W_{n}\right)=2 m-1$ for even n and $m \geq n+502$.
Lemma $6^{[9]}$ For all $p \geq 3, q \geq 1,0<\gamma<1$, there exist $c>0, \eta>0$ such that if n is large and $E\left(K_{p(n-1)+1}\right)=E(R) \cup E(B)$ is a 2-coloring, then one of the following statements holds:
(i) R contains $K_{p+1}(1,1, t, \cdots, t)$ for $t=\lceil c \operatorname{logn}\rceil$;
(ii) B contains every q-degenerate, (γ, η)-splittable graph G of order n.

We recall that a graph G is called q-degenerate if each of its subgraphs contains a vertex of degree at most q, that is, $q=\max \left\{\min \left\{d(u), u \in V\left(G^{\prime}\right)\right\}, G^{\prime} \in \mathscr{G}\right\}$ where \mathscr{G} is the set of all subgraphs of G. For given real numbers $\gamma, \eta>0$, we say that the graph G of order n is (γ, η)-splittable if there exists a set $S \subseteq V(G)$ with $|S|<n^{1-\gamma}$ such that the order of any component of $G-S$ is at most ηn.

[^0]: *Manuscript received July 17, 2017; Revised October 23, 2017
 ${ }^{\dagger}$ Corresponding author. E-mail: sllbeilin112@163.com

