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Abstract. We introduce a novel algorithm for gradient-based optimization of
stochastic objective functions. The method may be seen as a variant of SGD
with momentum equipped with an adaptive learning rate automatically adjusted
by an ‘energy’ variable. The method is simple to implement, computationally
efficient, and well suited for large-scale machine learning problems. The method
exhibits unconditional energy stability for any size of the base learning rate. We
provide a regret bound on the convergence rate under the online convex opti-
mization framework. We also establish the energy-dependent convergence rate
of the algorithm to a stationary point in the stochastic non-convex setting. In
addition, a sufficient condition is provided to guarantee a positive lower thresh-
old for the energy variable. Our experiments demonstrate that the algorithm
converges fast while generalizing better than or as well as SGD with momentum
in training deep neural networks, and compares also favorably to Adam.
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1 Introduction

Stochastic gradient descent (SGD) [33] is now one of the most dominant approaches
for training many machine learning (ML) models including deep neural networks
(DNNs) [8]. In each iteration, SGD only performs one parameter update on a mini-
batch of training examples. Hence it is simple and has been proven to be efficient,
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especially for tasks on large datasets [3, 13, 43]. However, the variance of SGD
can slow down the convergence after the first few training epochs; a decaying step
size typically has to be applied, which is one of the major bottlenecks for the fast
convergence of SGD [3,36]. In recent years, adaptive variants of SGD have emerged
and shown successes for their automatic learning rate adjustment. Examples include
Adagrad [7], Adadelta [45], RMSprop [41], and Adam [17]; while Adam, which may
be seen as a combination of RMSprop and an exponential moving average of the
first moment, stands out in this family of algorithms and stays popular on various
tasks. However, training with Adam or its variants typically generalizes worse than
SGD with momentum (SGDM), even when the training performance is better [43].
This explains why SGD(M) remains as a popular alternative.

AEGD (Adaptive gradient decent with energy) [21] is another gradient-based
optimization algorithm that outperforms vanilla SGD. The distinct feature of AEGD
is the use of an additional energy variable, which is updated together with the
solution. The resulting algorithm is unconditionally energy stable (in the sense
detailed in section 2) regardless of the base learning rate. Moreover, the element-
wise AEGD allows for different effective learning rates for different coordinates,
which has been empirically verified more effective than the global AEGD, see [21].
With AEGD the effective learning rate is the base learning rate multiplied by the
energy term, against a transformed gradient.

With Adam-like adaptive gradient methods, adaptation is realized by the nor-
malization in terms of the running average of the second order moment. While
these algorithms have been successfully employed in several practical applications,
they have also been observed to not converge in some other settings mainly due to
the relative sensitivity in such adaptation. Indeed, counterexamples are provided
in recent works [4, 24, 32] to show that RMSprop and Adam do not converge to an
optimal solution in either convex or non-convex settings. In contrast, the motivation
in AEGD is drawn from the perspective of dynamical systems with energy dissipa-
tion [21]. AEGD is unconditionally energy stable with guaranteed convergence in
energy regardless of the size of the base learning rate and the shape of the objective
functions. This explains why the method can have a rapid initial training process
as well as good final generalization performance.

On the other hand, it has been long known that using momentum can help
accelerate gradient descent, hence speeding up the convergence of vanilla Gradient
Decent (GD) [29]. For many application tasks, momentum can also help reduce the
variance in stochastic gradients [31, 35]. Using momentum has become a popular
tectnique in order to gain convergence speed significantly [1, 17,39].

With all these observations, a natural question is:

Can we take the best from both AEGD and SGDM, i.e., design an al-


