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Abstract. Symmetric and symplectic methods are classical notions in the theory
of numerical methods for solving ordinary differential equations. They can gener-

ate numerical flows that respectively preserve the symmetry and symplecticity of

the continuous flows in the phase space. This article is mainly concerned with the
symmetric-adjoint and symplectic-adjoint Runge-Kutta methods as well as their ap-

plications. It is a continuation and an extension of the study in [14], where the au-

thors introduced the notion of symplectic-adjoint method of a Runge-Kutta method
and provided a simple way to construct symplectic partitioned Runge-Kutta methods

via the symplectic-adjoint method. In this paper, we provide a more comprehensive
and systematic study on the properties of the symmetric-adjoint and symplectic-

adjoint Runge-Kutta methods. These properties reveal some intrinsic connections

among some classical Runge-Kutta methods. Moreover, those properties can be used
to significantly simplify the order conditions and hence can be applied to the con-

struction of high-order Runge-Kutta methods. As a specific and illustrating appli-

cation, we construct a novel class of explicit Runge-Kutta methods of stage 6 and
order 5. Finally, with the help of symplectic-adjoint method, we thereby obtain

a new simple proof of the nonexistence of explicit Runge-Kutta method with stage 5
and order 5.
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1. Introduction

In his book Institutionum calculi integralis in 1768 [12], Euler introduced a first-

order numerical procedure for solving ordinary differential equations (ODEs), which
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is nowadays known as the Euler method. It is the most basic explicit method for the

numerical integration of initial value problems for ODEs of the form

y′(t) = f(t, y), y(t0) = y0. (1.1)

More than 100 years later around 1900, the German mathematicians Runge and Kutta

developed the nowadays known Runge-Kutta methods. The Runge-Kutta methods are

a family of iterative methods for the numerical integration of (1.1), and they include

the Euler method as a simple and special case. Choosing a step-size h ∈ R+, an s-stage

Runge-Kutta method takes the following form:

yn+1 = yn + h

s∑

i=1

biki, (1.2)

where

ki = f

(
tn + cih, yn + h

s∑

j=1

aijkj

)
, i = 1, . . . , s, (1.3)

the coefficients aij, i, j = 1, . . . , s, b1, b2, . . . , bs, c1, c2, . . . , cs are real numbers, and (2.1)

holds. The matrix A = (aij)
s
i,j=1 is called the Runge-Kutta matrix, while b = (bi)

s
i=1

and c = (ci)
s
i=1 are known as the weighting and nodal vectors, respectively. These

data are usually arranged in a mnemonic device, known as a Butcher tableau (after

Butcher),
c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

=
c A

b
T . (1.4)

The study of Runge-Kutta methods has a long and colourful history. In this paper,

we are concerned with several classical notions in the theory of Runge-Kutta methods

including symmetric method, symplectic method, adjoint method, and explicit/implicit

method. Symmetric-adjoint method was originated by Scherer [27] and Butcher [6]

who proposed the notion of reflected Runge-Kutta methods and in [16, 17], this class

of Runge-Kutta methods is referred to as the adjoint methods, and their properties

were studied. In [14], motivated by the symmetric-adjoint method, we introduced

the notion of symplectic-adjoint method of a Runge-Kutta method. Some interesting

properties about the symplectic-adjoint methods were presented in [14]. This article

is a continuation as well as an extension of the study in [14]. First, we present the

properties of the symmetric-adjoint and symplectic-adjoint Runge-Kutta methods in

a more comprehensive and systematic way. Using those properties, we reveal some

intrinsic connections among some classical Runge-Kutta methods including the Lobatto-

type and Radau-type methods. Moreover, we show that those properties can be used to

significantly simplify the order conditions and hence can be applied to the construction


