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Abstract

We propose a θ-L approach for solving a sharp-interface model about simulating solid-

state dewetting of thin films with isotropic/weakly anisotropic surface energies. The sharp-

interface model is governed by surface diffusion and contact line migration. For solving

the model, traditional numerical methods usually suffer from the severe stability constraint

and/or the mesh distribution trouble. In the θ-L approach, we introduce a useful tangential

velocity along the evolving interface and utilize a new set of variables (i.e., the tangential

angle θ and the total length L of the interface curve), so that it not only could reduce

the stiffness resulted from the surface tension, but also could ensure the mesh equidistri-

bution property during the evolution. Furthermore, it can achieve second-order accuracy

when implemented by a semi-implicit linear finite element method. Numerical results are

reported to demonstrate that the proposed θ-L approach is efficient and accurate.
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1. Introduction

Solid thin films deposited on inert substrates will spontaneously dewet or agglomerate at

elevated temperatures which are well below their melting points (i.e., the films are still in

solid-state) [23, 26, 27, 39, 45, 51, 53]. This kind of solid-state dewetting has been thought of

as a drawback in producing thin film-based devices since it can destroy the film structure

and decrease the stability of the devices [26, 45]. However, solid-state dewetting has been

recently exploited to provide a simple way for fabrication of well-ordered micro- and nano-

structures [26, 45, 47, 51–53] which possess a wide range of applications in sensing [1], catalysis

for nanotube and nanowire growth [40,42] and many other nano-technology-related applications

[26,45]. These rich applications have led to renewed interests in designing mathematical models

[2, 8, 16, 18–20, 22, 37, 43, 48, 49, 56] and efficient numerical methods [3, 4, 8, 18, 48, 49, 55, 56] for

simulating solid-state dewetting.
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From modeling point of view, the solid-state dewetting problem belongs to a type of interface

evolution problems. The problem is described by the evolution of the film/vapor interface and

the migration of contact lines where the film, vapor and substrate phases meet with each other

(as shown in Fig. 1.1). For modeling such an interface problem, a sharp-interface model is widely

used [19,20,48]. In this model, the evolving film/vapor interface is usually described by surface

diffusion flow, since the dominant mass transport process in solid-state dewetting is generally

thought of as surface diffusion [32]; the contact line migration is designed to satisfy some

physical constraints, such as the mass conservation and total free energy dissipation [20,25,48].

Under isotropic/weakly anisotropic surface energies, solid-state dewetting of thin films can be

described by a (dimensionless) sharp-interface model in two dimensions as [3, 48]

∂tX = V n = ∂ssµ n, 0 < s < L(t), t > 0,

µ = γ̃(θ)κ =
(
γ(θ) + γ ′′(θ)

)
κ, κ = −(∂ssX) · n

(1.1)

subject to the following three boundary conditions:

(i) contact point condition

y(0, t) = 0, y(L, t) = 0, t ≥ 0, (1.2)

(ii) relaxed contact angle condition

dxl
c

dt
= ηf

(
θld;σ

)
,

dxr
c

dt
= −ηf (θrd;σ) , t ≥ 0, (1.3)

(iii) zero-mass flux condition

∂sµ(0, t) = 0, ∂sµ(L, t) = 0, t ≥ 0, (1.4)

where s is the arc length, t is time, X := X(s, t) = (x(s, t), y(s, t)) represents the film/vapor

interface (shown in Fig. 1.1) which is initially given as X(s, 0) = X0(s), 0 ≤ s ≤ L(0), L := L(t)

is the total length of the interface curve, n is the unit outer normal vector, V := V (s, t) = ∂ssµ

denotes the normal velocity with µ := µ(s, t) representing the chemical potential, κ := κ(s, t) is

the curvature of the interface curve, γ(θ) represents the surface energy density where θ ∈ [−π, π]

is the local orientation (the interfacial normal/tangent angle) defined as the angle between n

and y-axis (or the angle between the unit tangent vector τ and x-axis), γ̃(θ) := γ(θ) + γ ′′(θ)
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Fig. 1.1. A schematic illustration of an island film lying on a rigid flat substrate in two dimensions.


