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Abstract. We examine the possibility of using a reinforcement learning (RL) algorithm
to solve large-scale eigenvalue problems in which the desired the eigenvector can be
approximated by a sparse vector with at most k nonzero elements, where k is relatively
small compare to the dimension of the matrix to be partially diagonalized. This type
of problem arises in applications in which the desired eigenvector exhibits localization
properties and in large-scale eigenvalue computations in which the amount of com-
putational resource is limited. When the positions of these nonzero elements can be
determined, we can obtain the k-sparse approximation to the original problem by com-
puting the eigenvalue of a k×k submatrix extracted from k rows and columns of the
original matrix. We review a previously developed greedy algorithm for incrementally
probing the positions of the nonzero elements in a k-sparse approximate eigenvector
and show that the greedy algorithm can be improved by using an RL method to refine
the selection of k rows and columns of the original matrix. We describe how to rep-
resent states, actions, rewards and policies in an RL algorithm designed to solve the
k-sparse eigenvalue problem and demonstrate the effectiveness of the RL algorithm on
two examples originating from quantum many-body physics.
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1 Introduction

Let A be an n×n sparse symmetric matrix, where n can be very large. We are interested
in solving the following problem

min
‖x‖0≤k

xT Ax

xTx
, (1.1)

where ‖·‖0 denotes the cardinality of a vector, i.e., the number of non-zero elements of
a vector. A vector x that satisfies ‖x‖0 = k is called a k-sparse vector. We will refer to
(1.1) as a k-sparse eigenvalue problem because the solution to (1.1) is the eigenvector
associated with the algebraically smallest eigenvalue of A if the k-sparse constraint ‖x‖0

is not imposed. When the k-sparse constrain is imposed, the solution to (1.1) can be
obtained from the eigenvector of a submatrix of A with at most k rows and columns.

The k-sparse eigenvalue problem can also be more plainly stated as follows: Select at
most k rows and columns of A to form a submatrix A1 such that the algebraically smallest
eigenvalue of A1 is the smallest among all smallest eigenvalues of all submatrices of
dimension at most k. Note that we may replace the minimum in (1.1) by maximum if the
eigenvalue of interest is the largest among all eigenvalues. This problem is related to the
sparse principal component analysis (PCA) problem in which A is a covariant matrix of
the form A=BTB, and minimization is replaced with maximization in (1.1) [10, 16, 17].

If the eigenvector x∗ associated with the algebraically smallest eigenvalue of A has at
most k nonzero elements, it is the solution of (1.1). The positions of the nonzero elements
of the eigenvector specify the rows and columns of A that defines A1.

If x∗ has more than k nonzero elements, it is not entirely clear how one can obtain the
solution to (1.1) efficiently or which rows and columns of A should be extracted to form
A1 whose lowest eigenvalue yields the minimum of the objective function in (1.1). As we
will show in Section 5, even if we can compute the smallest eigenvalue of A, simply tak-
ing k rows and columns of A corresponding to the k largest components (in magnitude)
of the corresponding eigenvector does not necessarily yield the optimal solution to (1.1).

The k-sparse eigenvalue problem is of particular interest when we try to solve a large-
scale eigenvalue problem with a limited amount of computational resource. One of the
motivations originates from solving a quantum many body problem

HΨ=ΨE, (1.2)

where H is a many body Hamiltonian and Ψ is an eigenfunction of H corresponding to
the eigenvalue E. The lowest eigenvalue E0 and its corresponding eigenfunction form
the ground state of the many-body Hamiltonian [23, 24, 31].

One way to solve (1.2) is to expand Ψ in terms of a linear combination of a finite num-
ber of many-body basis functions known as Slater determinants in some well-defined
Hilbert space (often referred to as a configuration interaction space), and solve a pro-
jected linear eigenvalue problem in that subspace. To obtain an accurate approximation
to the solution of (1.2), the dimension of the configuration space may be prohibitively


