Tensor Bi-CR Methods for Solutions of High Order Tensor Equation Accompanied by Einstein Product

Masoud Hajarian*
Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

Received 15 April 2021; Accepted (in revised version) 26 May 2021

Abstract

Tensors have a wide application in control systems, documents analysis, medical engineering, formulating an n-person noncooperative game and so on. It is the purpose of this paper to explore two efficient and novel algorithms for computing the solutions \mathcal{X} and \mathcal{Y} of the high order tensor equation $\mathcal{A} *_{P} \mathcal{X} *_{Q} \mathcal{B}+\mathcal{C} *_{P} \mathcal{Y} *_{Q} \mathcal{D}=\mathcal{H}$ with Einstein product. The algorithms are, respectively, based on the Hestenes-Stiefel (HS) and the Lanczos types of bi-conjugate residual (Bi-CR) algorithm. The theoretical results indicate that the algorithms terminate after finitely many iterations with any initial tensors. The resulting algorithms are easy to implement and simple to use. Finally, we present two numerical examples that confirm our analysis and illustrate the efficiency of the algorithms.

AMS subject classifications: 15A24, 65H10, 15A69, 65F10
Key words: Hestenes-Stiefel (HS) type of bi-conjugate residual (Bi-CR) algorithm, Lanczos type of bi-conjugate residual (Bi-CR) algorithm, high order tensor equation, Einstein product.

1. Introduction

We shall require some definitions and notation from tensors. For integer $P>0$, denote by $\mathbb{R}^{N_{1} \times \cdots \times N_{P}}$ the space of all real tensors of order P. A tensor $\mathcal{A} \in \mathbb{R}^{N_{1} \times \cdots \times N_{P}}$ is an array indexed by an integer tuple $\left(i_{1}, \ldots, i_{P}\right)$ in the range $1 \leq i_{j} \leq N_{j}(j=$ $1, \ldots, P)$, that is, $\mathcal{A}=\left(a_{i_{1} \ldots i_{P}}\right)_{1 \leq i_{j} \leq N_{j}}(j=1, \ldots, P)$. The Einstein product of tensors is defined by the operation $*_{P}$ via

$$
\left(\mathcal{A} *_{P} \mathcal{B}\right)_{i_{1} \ldots i_{d} j_{1} \ldots j_{d}}=\sum_{k_{1}, \ldots, k_{d}=1}^{L_{1}, \ldots, L_{M}} a_{i_{1} \ldots i_{M} k_{1} \ldots k_{M}} b_{k_{1} \ldots k_{M} j_{1} \ldots j_{Q}}
$$

[^0]where $\mathcal{A} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{P}}$ and $\mathcal{B} \in \mathbb{R}^{L_{1} \times \cdots \times L_{P} \times N_{1} \times \cdots \times N_{Q}}$ [6,20,38]. The Einstein product of tensors plays very important roles in many fields such as in theory of relativity and continuum mechanics $[6,20,33]$. There recently has been growing interest in the Einstein product of tensors $[28,39,46,64]$. When $P=Q=1$, the Einstein product reduces to the standard matrix multiplication. The transpose of the tensor $\mathcal{A} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{P}}$ is defined as
$$
\left(\mathcal{A}^{T}\right)_{i_{1} \ldots i_{P} j_{1} \ldots j_{P}}=(\mathcal{A})_{j_{1} \ldots j_{P} i_{1} \ldots i_{P}} .
$$

The trace of the tensor $\mathcal{A} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{P}}$ is

$$
\operatorname{tr}(\mathcal{A})=\sum_{i_{1}, \ldots, i_{P}} a_{i_{1} \ldots i_{P} i_{1} \ldots i_{P}}
$$

The inner product of two tensors $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{Q}}$ is defined by

$$
\langle\mathcal{A}, \mathcal{B}\rangle=\operatorname{tr}\left(\mathcal{B}^{T} *_{P} \mathcal{A}\right) .
$$

When $\langle\mathcal{A}, \mathcal{B}\rangle=0$, we say that \mathcal{A} and \mathcal{B} are orthogonal. The Frobenius norm of $\mathcal{A} \in$ $\mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{P}}$ is defined as

$$
\|\mathcal{A}\|=\sqrt{\sum_{i_{1}, \ldots, i_{P}, j_{1}, \ldots, j_{P}}\left(a_{i_{1} \ldots i_{P} j_{1} \ldots j_{P}}\right)^{2}}=\sqrt{\langle\mathcal{A}, \mathcal{A}\rangle} .
$$

For any tensors $\mathcal{A}, \mathcal{B}, \mathcal{X} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times N_{1} \times \cdots \times N_{Q}}, \mathcal{C} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{P}}, \mathcal{Y} \in$ $\mathbb{R}^{L_{1} \times \cdots \times L_{P} \times N_{1} \times \cdots \times N_{Q}}$ and any scalar $\lambda \in \mathbb{R}$, it can readily be verified that $[55,58]$

$$
\begin{align*}
& \langle\mathcal{A}, \mathcal{B}\rangle=\operatorname{tr}\left(\mathcal{B}^{T} *_{P} \mathcal{A}\right)=\operatorname{tr}\left(\mathcal{A} *_{Q} \mathcal{B}^{T}\right) \\
& \quad=\operatorname{tr}\left(\mathcal{B} *_{Q} \mathcal{A}^{T}\right)=\operatorname{tr}\left(\mathcal{A}^{T} *_{P} \mathcal{B}\right)=\langle\mathcal{B}, \mathcal{A}\rangle, \tag{1.1}\\
& \langle\lambda \mathcal{A}, \mathcal{B}\rangle=\lambda\langle\mathcal{A}, \mathcal{B}\rangle, \tag{1.2}\\
& \left\langle\mathcal{X}, \mathcal{C} *_{P} \mathcal{Y}\right\rangle=\left\langle\mathcal{C}^{T} *_{P} \mathcal{X}, \mathcal{Y}\right\rangle, \tag{1.3}\\
& \left(\mathcal{C} *_{P} \mathcal{Y}\right)^{T}=\mathcal{Y}^{T} *_{P} \mathcal{C}^{T} . \tag{1.4}
\end{align*}
$$

Definition 1.1 ([58]). Define the transformation $\phi_{M L}: \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{P}} \rightarrow$ $\mathbb{R}^{M \times L}$ with $M=M_{1} M_{2} \ldots M_{P}, L=L_{1} L_{2} \ldots L_{P}$ and $\phi_{M L}(\mathcal{A})=A$ defined componentwise as

$$
(\mathcal{A})_{i_{1} \ldots i_{P} j_{1} \ldots j_{P}} \rightarrow A_{s t},
$$

where $\mathcal{A} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{P}}, A \in \mathbb{R}^{M \times L}, s=i_{P}+\sum_{k=1}^{P-1}\left(\left(i_{k}-1\right) \prod_{r=k+1}^{P} M_{r}\right)$ and $t=j_{P}+\sum_{k=1}^{P-1}\left(\left(j_{k}-1\right) \prod_{r=k+1}^{P} L_{r}\right)$.
Lemma 1.1 ([58]). For $\mathcal{A} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times L_{1} \times \cdots \times L_{P}}, \mathcal{X} \in \mathbb{R}^{L_{1} \times \cdots \times L_{P} \times N_{1} \times \cdots \times N_{Q}}$ and $\mathcal{C} \in \mathbb{R}^{M_{1} \times \cdots \times M_{P} \times N_{1} \times \cdots \times N_{Q}}$ we have

$$
\mathcal{A} *_{P} \mathcal{X}=\mathcal{C} \Leftrightarrow \phi_{M L}(\mathcal{A}) \phi_{L N}(\mathcal{X})=\phi_{M N}(\mathcal{C}) .
$$

[^0]: *Corresponding author. Email addresses: masoudhajarian@gmail.com, m_hajarian@sbu.ac.ir, mhaja rian@aut.ac.ir (M. Hajarian)

