Commutators of Multilinear Singular Integrals with Lipschitz Functions*

Wang Wei and Xu Jing-Shi
(Department of Mathematics, Hunan Normal University, Changsha, 410081)
Communicated by Ji You-qing

Abstract

The boundedness of commutators of multilinear singular integrals with Lipschitz functions in product Lebesgue spaces is obtained.

Key words: multilinear singular integral, Lipschitz function, commutator, maximal function
2000 MR subject classification: 42B20, 42B25
Document code: A
Article ID: 1674-5647(2009)04-0318-11

1 Introduction

In recently years, multilinear singular integrals of Calderón-Zygmund type have attracted much attention. Many results parallel to the linear theroy of classical Calderón-Zygmund operators have been obtained. For details, one can see [1]-[5]. Meanwhile, commutators of singular integral operators continue to attract many authors' attention, see [6]-[12] and the references therein. Indeed, the multilinear commutator as a generalization of commutator was introduced by Perez and Trujillo-Gonzalez in [11] recently. And in [12], Perez and Trujillo-Gonzalez obtained sharp weighted estimates for vector valued singular integral operators and commutators. Motivated by these results mentioned above, we consider commutators of multilinear singular integrals with Lipschitz functions.

Let T be a multilinear operator which is initially defined on the m-fold product of Schwartz space $\mathscr{S}\left(\mathbf{R}^{n}\right)$ and take its values into the space of tempered distributions $\mathscr{S}^{\prime}\left(\mathbf{R}^{n}\right)$. We assume that the distributional kernel on $\left(\mathbf{R}^{n}\right)^{m+1}$ of the operators coincides away from the diagonal $y_{0}=y_{1}=\cdots=y_{m}$ in $\left(\mathbf{R}^{n}\right)^{m+1}$ with a function K so that

$$
\begin{align*}
T \boldsymbol{f}(x) & =T\left(f_{1}, \cdots, f_{m}\right)(x) \\
& =\int_{\left(\mathbf{R}^{n}\right)^{m}} K\left(x, y_{1}, \cdots, y_{m}\right) f_{1}\left(y_{1}\right) \cdots f_{m}\left(y_{m}\right) \mathrm{d} y_{1} \cdots \mathrm{~d} y_{m} \tag{1.1}
\end{align*}
$$

[^0]whenever f_{1}, \cdots, f_{m} are $L_{C}^{\infty}\left(\mathbf{R}^{n}\right)$ and $x \notin \bigcap_{j=1}^{m} \operatorname{supp} f_{j}$, where as usual, $L_{C}^{\infty}\left(\mathbf{R}^{n}\right)$ denotes all $L^{\infty}\left(\mathbf{R}^{n}\right)$ functions with compact support. Moreover, we assume that the kernel function K satisfies the standard estimates
\[

$$
\begin{equation*}
\left|K\left(y_{0}, y_{1}, \cdots, y_{m}\right)\right| \leq A\left(\sum_{k, l=0}^{m}\left|y_{k}-y_{l}\right|\right)^{-m n} \tag{1.2}
\end{equation*}
$$

\]

when $y_{0}, y_{1}, \cdots, y_{m}$ are not all equal, and for some $\epsilon>0$,

$$
\begin{equation*}
\left|K\left(y_{0}, y_{1}, \cdots, y_{j}, \cdots, y_{m}\right)-K\left(y_{0}, y_{1}, \cdots, y_{j}^{\prime}, \cdots, y_{m}\right)\right| \leq \frac{A\left|y_{j}-y_{j}^{\prime}\right|^{\epsilon}}{\left(\sum_{k, l=0}^{m}\left|y_{k}-y_{l}\right|\right)^{m n+\epsilon}} \tag{1.3}
\end{equation*}
$$

provided that $0 \leq j \leq m$ and

$$
\left|y_{j}-y_{j}^{\prime}\right| \leq \frac{1}{2} \max _{0 \leq k \leq m}\left|y_{j}-y_{k}\right|
$$

Such kernels are called m-linear Calderón-Zygmund kernels and the collection of such functions is denoted by $m-C Z K(A, \epsilon)$ in [1].

For these operators, Grafakos and Torres ${ }^{[1]}$ obtained a boundedness estimate

$$
T: L^{q_{1}} \times \cdots \times L^{q_{m}} \rightarrow L^{q}
$$

for some $1<q_{1}, \cdots, q_{m}<\infty$ with

$$
\begin{equation*}
\frac{1}{q_{1}}+\cdots+\frac{1}{q_{m}}=\frac{1}{q} \tag{1.4}
\end{equation*}
$$

which implies the boundedness of the operator for all possible exponents in such range of values, and an endpoint estimate

$$
T: L^{q_{1}} \times \cdots \times L^{q_{m}} \rightarrow L^{q, \infty}
$$

for $1<q_{1}, \cdots, q_{m}<\infty$ satisfying (1.4), where L^{p} and $L^{p, \infty}$ denote Lebesgue spaces and weak Lebesgue spaces for $0<p<\infty$ respectively. In particular, it holds that

$$
T: L^{1} \times \cdots \times L^{1} \rightarrow L^{\frac{1}{m}, \infty}
$$

which extends the classical results to the linear case $T: L^{1} \rightarrow L^{1, \infty}$.
Let T be as in (1.2) with an $m-C Z K(A, \epsilon)$ kernel. If T is bounded from $L^{q_{1}} \times \cdots \times L^{q_{m}}$ to L^{q} with $1<q_{1}, \cdots, q_{m}<\infty$ and

$$
\frac{1}{q_{1}}+\cdots+\frac{1}{q_{m}}=\frac{1}{q}
$$

then we say that T is an $m-C Z O$.
Now we define multilinear commutators generated by Calderón-Zygmund operators and Lipschitz functions. First we recall the following definition of Lipschitz functions.

Definition 1.1 Let $\beta>0$ and b be a locally integrable function on \mathbf{R}^{n}. We say belongs to the space $\operatorname{Lip}(\beta)$ if there is a constant $C>0$ such that

$$
\begin{equation*}
|b(x)-b(y)| \leq C|x-y|^{\beta} \tag{1.5}
\end{equation*}
$$

for almost every x and y in \mathbf{R}^{n}. The minimal constant C appeared in (1.5) is the Lip (β) norm of b and is denoted simply by $\|b\|_{L i p(\beta)}$.

Let $\boldsymbol{b}=\left(b_{1}, \cdots, b_{m}\right)$ with $b_{i} \in \operatorname{Lip}\left(\beta_{i}\right), 0<\beta_{i} \leq 1$ for $1 \leq i \leq m$, where $\beta=\sum_{i=1}^{m} \beta_{i}$ and $0<\beta<n$, and $\boldsymbol{f}=\left(f_{1}, \cdots, f_{m}\right)$ for suitable functions f_{1}, \cdots, f_{m}. We consider the

[^0]: *Received date: Sept. 5, 2008.
 Foundation item: The corresponding author Xu Jingshi is supported by NSF (10671062) of China and the NSF (06JJ5012) of Hunan Province, China.

