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Abstract: In this paper, the authors consider the positive solutions of the system of

the evolution p-Laplacian equations
{

ut = div(| ∇u |p−2 ∇u) + f(u, v), (x, t) ∈ Ω × (0, T ),
vt = div(| ∇v |p−2 ∇v) + g(u, v), (x, t) ∈ Ω × (0, T )

with nonlinear boundary conditions
∂u

∂η
= h(u, v),

∂v

∂η
= s(u, v),

and the initial data (u0, v0), where Ω is a bounded domain in R
n with smooth

boundary ∂Ω , p > 2, h( · , · ) and s( · , · ) are positive C1 functions, nondecreasing

in each variable. The authors find conditions on the functions f , g, h, s that prove

the global existence or finite time blow-up of positive solutions for every (u0, v0).
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1 Introduction

In this paper, we consider the system
{

ut = div(|∇u|p−2∇u) + f(u, v), (x, t) ∈ Ω × (0, T ),

vt = div(|∇v|p−2∇v) + g(u, v), (x, t) ∈ Ω × (0, T )
(1.1)

with nonlinear boundary conditions














∂u

∂η
= h(u, v), (x, t) ∈ ∂Ω × (0, T ),

∂v

∂η
= s(u, v), (x, t) ∈ ∂Ω × (0, T ),

(1.2)

where p > 2, Ω is a bounded domain in R
n with smooth boundary ∂Ω , f( · , · ) and g( · , · )

are both nonnegative continuous functions and nondecreasing in each variable, and h( · , · )
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and s( · , · ) are both positive C1 functions and nondecreasing in each variable. The initial

data are
{

u(x, 0) = u0(x), x ∈ Ω ,

v(x, 0) = v0(x), x ∈ Ω ,
(1.3)

where u0, v0 are positive continuous functions on Ω .

When p = 2, the problem














ut = △u, (x, t) ∈ Ω × (0, T ),

∂u

∂η
= f(u), (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω

has been studied by many authors (see [1]–[5]). In [1], Rial and Rossi proved a blow-up

result under the condition
∫ +∞ 1

f
< +∞.

In [2], Walter proved a global existence result. In [3]–[5], the authors obtained some results

on local existence of classical or weak solutions.

With the use of supersolution-subsolution method, we relate (1.1)–(1.3) to the corre-

sponding system of nonlinear differential equations


















ϕ′(σ) = h(ϕ(σ), ψ(σ)), σ ∈ R,

ψ′(σ) = s(ϕ(σ), ψ(σ)), σ ∈ R,

ϕ(0) = ϕ0,

ψ(0) = ψ0,

(1.4)

where ϕ0, ψ0 are suitable nonegative constants. By constructing a subsolution or a superso-

lution, we can obtain the global finiteness or blow-up properties to the positive solutions of

the system respectively. The similar ideas can be found in [6] and [7]. We obtain the main

results as follows.

Theorem 1.1 If the positive solution of (1.4) blows up, then the positive solution of

(1.1)–(1.3) blows up.

Suppose that (1.4) has a global positive solution (ϕ(σ), ψ(σ)). Set
{

F (σ) = (ϕ′(σ))p−2ϕ′′(σ) + (ϕ′(σ))p−1 + f(ϕ(σ), ψ(σ)), σ ∈ R,

G(σ) = (ψ′(σ))p−2ψ′′(σ) + (ψ′(σ))p−1 + g(ϕ(σ), ψ(σ)), σ ∈ R.

And suppose that
F (σ)

ϕ′(σ)
,
G(σ)

ψ′(σ)
are monotonically increasing or decreasing simultaneously.

We get the following theorems.

Theorem 1.2 If
∫

∞ 1

min
{F (σ)

ϕ′(σ)
,
G(σ)

ψ′(σ)

}

dσ < +∞,

then the positive solution of (1.1)–(1.3) blows up.


