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Abstract. The Nonlinear Noisy Leaky Integrate and Fire neuronal models are math-
ematical models that describe the activity of neural networks. These models have
been studied at a microscopic level, using Stochastic Differential Equations, and at
a mesoscopic/macroscopic level, through the mean field limits using Fokker-Planck
type equations. The aim of this paper is to improve their understanding, using a
numerical study of their particle systems. This allows us to go beyond the meso-
scopic/macroscopic description. We answer one of the most important open questions
about these models: what happens after all the neurons in the network fire at the same
time? We find that the neural network converges towards its unique steady state, if
the system is weakly connected. Otherwise, its behaviour is more complex, tending
towards a stationary state or a “plateau” distribution (membrane potentials are uni-
formly distributed between reset and threshold values). To our knowledge, these dis-
tributions have not been described before for these nonlinear models. In addition, we
analyse in depth the behaviour of the classical and physical solutions of the Stochastic
Differential Equations and, we compare it with what is already known about the classi-
cal solutions of Fokker-Planck equation. In this way, our numerical analysis, based on
the microscopic scale, allows us to explain not only what happens after the explosion
phenomenon, but also, how the physical solutions of the Fokker-Planck equation are.
This notion of solution, for the Fokker-Planck equation, has not been studied to date.
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M. J. Cáceres and A. Ramos-Lora / Commun. Comput. Phys., 30 (2021), pp. 820-850 821

1 Introduction

Nonlinear Noisy Leaky Integrate and Fire neuronal (NNLIF) models are one of the sim-
plest models used to describe the behaviour of a neuronal network [2–4, 23, 28, 37]. In
recent years, NNLIF models have been studied from a mathematical point of view; at
the microscopic level, using Stochastic Differential Equations (SDE) [16, 17, 24], and at a
mesoscopic/macroscopic level, through the mean field limits using Fokker-Planck type
equations (FPE) [5, 7–10, 12, 22, 36]. The considerable amount of publications and unan-
swered questions on these models reveal their high mathematical complexity, despite
their simplicity.

The aim of this paper is to advance the understanding of the NNLIF models. We
analyse in depth the behaviour of the classical and physical solutions of the Stochastic
Differential Equations and we compare it with what is already known about the Fokker-
Planck equation, using a numerical study of their particle systems. This allows us to
understand what happens in the neural network when an explosion occurs in finite time,
which is one of the most important open problems about this kind of models.

1.1 Stochastic differential equation and Fokker-Planck equation

Let us consider a large set of N identical neurons which are connected to each other
in a network and described by the Nonlinear Noisy Leaky Integrate and Fire (NNLIF)
model. This model represents the network activity in relation to the membrane potential,
which is the potential difference on both sides of the neuronal membrane. The membrane
potential Vi(t) of a single neuron i is given by [3, 4, 15, 35]:

CmV̇i(t)=−gL(Vi(t)−VL)+ Ii(t), i=1,··· ,N , (1.1)

where Cm is the capacitance of the membrane, gL is the leak conductance, VL is the resting
potential and Ii(t) are the synaptic currents. These currents are produced by the local
and external synapses, i.e. they are the sum of spikes received from C neurons (inside
and outside the neuron network):

Ii(t)=∑
j

∑
k

Jijδ(t−t
j
ik−d). (1.2)

The Dirac delta δ(t−t
j
ik−d) models the input contribution of each spike; t

j
ik is the time

when the k-th spike of the j-th neuron took place, Jij is the synaptic strength (positive
value for excitatory neurons and negative value for inhibitory ones), and d in the argu-
ment is the synaptic delay.

A neuron spikes when its membrane voltage reaches the firing threshold value VF.
Then, the neuron discharges itself by sending a spike perturbation over the network, and
its membrane potential is set to the reset value VR. The relation between the three values
VL, VF and VR is the following: VL<VR<VF.


