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Abstract. In this paper we consider a spectral problem which describes bending vi-
brations of a homogeneous rod, in cross-sections of which the longitudinal force acts,
the left end of which is fixed rigidly and on the right end is concentrated an elastically
fixed load. We study the uniform convergence of spectral expansions in terms of root
functions of this problem.
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1 Introduction

The small bending vibrations of a homogeneous rod (Euler-Bernoulli beam) of length L
and of constant rigidity, in cross sections of which the longitudinal force acts, is described
by the equation [7, Ch. 8, Section 5, formula (84)]
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where U(X,t) is a flexure of the current point of axis of the rod, EJ is the flexural rigidity
of the rod, Q̃(X) is longitudinal force.
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If the left end is fixed rigidly and at the right end is concentrated an elastically fixed
load with mass of m, then the boundary conditions can be written in the following for-
m [7, Ch. 8, Section 5, p. 154]
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By use of the notation x= X
L , u= U

L we can write the equation of small bending vibrations
of a homogeneous rod and the boundary conditions in the following form:
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where Q(x)= L2

EJ Q̃(Lx).

Let λ=ρFL4ω2/EJ. Then considered problem with substitution u(x,t)=y(x)cosωt is
reduced (see, e.g., [7, Ch. 11, Section 2, formula (12)]) to the following eigenvalue problem

y(4)(x)−(q(x)y′(x))′=λy(x), 0< x<1, (1.1a)

U1(λ,y)≡y(0)=0, U2(λ,y)≡y′(0)=0, U3(λ,y)≡y′′(1)=0, (1.1b)

U4(λ,y)≡Ty(1)−(aλ+b)y(1)=0, (1.1c)

where

q(x)≡Q(x)>0, x∈ [0,1], Ty≡y′′′−qy′, a=
m

ρFL
>0, b=− c1L3

EJ
<0.

Moreover, we assume that q(x) is an absolutely continuous function on [0,1].

One of the most common methods for solving partial differential equations is method
of separation of variables. The justification of this method is based on the convergence
of spectral expansions in the systems of root functions of the corresponding eigenvalue
problems in various functional spaces.

The spectral properties of problem (1.1a)-(1.1c) in more general form were investigat-
ed in the paper [2]. The subject of the present paper is the study of uniform convergence
of Fourier series expansions for continuous functions in the subsystems of root functions
of problem (1.1a)-(1.1c).


