Global Solutions of Modified One-Dimensional Schrödinger Equation

Ting Zhang*
School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China.

Received 30 January 2021; Accepted 30 March 2021

Abstract

In this paper, we consider the modified one-dimensional Schrödinger equation: $$
\left(D_{t}-F(D)\right) u=\lambda|u|^{2} u
$$ where $F(\xi)$ is a second order constant coefficients classical elliptic symbol, and with smooth initial datum of size $\varepsilon \ll 1$. We prove that the solution is global-intime, combining the vector fields method and a semiclassical analysis method introduced by Delort. Moreover, we get a one term asymptotic expansion for u when $t \rightarrow+\infty$.

AMS subject classifications: Primary: 35Q55; Secondary: 35A01, 35B40, 35 S50
Key words: Schrödinger equation, semiclassical Analysis, global solution.

1 Introduction

We consider the following modified one-dimensional Schrödinger equation:

$$
\left\{\begin{array}{l}
\left(D_{t}-F(D)\right) u=\lambda|u|^{2} u, \quad t>0, \quad x \in \mathbb{R}, \tag{1.1}\\
u(x, 0)=\varepsilon u_{0}(x),
\end{array}\right.
$$

where $D_{t}=\partial_{t} / i, D=\partial_{x} / i, F(\xi)$ is a second order constant coefficients classical elliptic symbol, u is a complex valued function, and $\lambda=1$ or $\lambda=-1$ correspons

[^0]to the defocusing or the focusing case. We assume that $F(\xi)$ is a smooth function defined on $\mathbb{R}, \xi \rightarrow F(\xi) \in \mathbb{R}$, satisfying
\[

$$
\begin{equation*}
F(\tilde{\xi}) \in C^{\infty}(\mathbb{R}), \quad|F(\xi)| \leq c_{0}\left(1+|\xi|^{2}\right), \quad 0<c_{1} \leq F^{\prime \prime}(\tilde{\xi}) \leq c_{2}, \quad \text { for all } \quad \xi \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

\]

for some positive constants $c_{i}, i=0,1,2$. For example, we can choose a smooth function $F(\xi)$, which has an expansion

$$
F(\xi)=c_{ \pm}^{2} \xi^{2}+c_{ \pm}^{1} \xi+c_{ \pm}^{0}+c_{ \pm}^{-1} \xi^{-1}+c_{ \pm}^{-2} \xi^{-2}+\ldots
$$

when ξ goes to $\pm \infty$, where $c_{ \pm}^{2}>0$.
For the classical one-dimensional Schrödinger equation

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} u_{x x}=\lambda|u|^{2} u, \quad t>0, \quad x \in \mathbb{R} \tag{1.3}\\
u(x, 0)=\varepsilon u_{0}(x)
\end{array}\right.
$$

there are many papers that studied the global well-posedness problem, decay and the asymptotic behavior of the solution, see [4-6,9,11,13,16,20]. It has a modified linear scattering

$$
\begin{align*}
& u(x, t)=\frac{1}{\sqrt{t}} e^{\frac{i x^{2}}{2 t}} W\left(\frac{x}{t}\right) e^{-i \lambda \ln t\left|W\left(\frac{x}{t}\right)\right|^{2}}+e r r_{x} \tag{1.4}\\
& \widehat{u}(\xi, t)=e^{-\frac{i t \xi^{2}}{2}} W(\xi) e^{-i \lambda \ln t|W(\xi)|^{2}}+e \operatorname{err}_{\xi} \tag{1.5}
\end{align*}
$$

where

$$
\begin{aligned}
& \operatorname{err}_{x}=\varepsilon O_{L_{x}^{\infty}}\left((1+t)^{-\frac{3}{4}+C \varepsilon^{2}}\right) \cap O_{L_{x}^{2}}\left((1+t)^{-1+C \varepsilon^{2}}\right), \\
& \operatorname{err}_{\xi}=\varepsilon O_{L_{\xi}^{\infty}}\left((1+t)^{-\frac{1}{4}+C \varepsilon^{2}}\right) \cap O_{L_{\xi}^{2}}\left((1+t)^{-\frac{1}{2}+C \varepsilon^{2}}\right) .
\end{aligned}
$$

For the classical one-dimensional Schrödinger equation (1.3), there is a vector field $L=x+i t \partial_{x}$, which is the generator of the Galilean group of symmetries, satisfying

$$
e^{\frac{i t}{2} \partial_{x}^{2}} x=L e^{\frac{i t}{2} \partial_{x}^{2}}, \quad\left[i \partial_{t}+\frac{1}{2} \partial_{x}^{2}, L\right]=0
$$

and

$$
\begin{equation*}
L\left(u|u|^{2}\right)=2|u|^{2} L u-u^{2} \overline{L u} . \tag{1.6}
\end{equation*}
$$

For the modified Schrödinger equation (1.1), we also can define a vector field

$$
\begin{equation*}
\mathcal{L}=x+t F^{\prime}(D) \tag{1.7}
\end{equation*}
$$

[^0]: *Corresponding author. Email address: zhangting79@zju.edu.cn (T. Zhang)

