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Abstract. In this paper, we develop and analyze a discontinuous Galerkin (DG)
method with minimal dissipation for the static bending problem of a finite-strain plate
equation. The equations are deduced from a three-dimensional field equation. So the
coupling of the equations and the mixed derivative terms are the barriers during devel-
oping discretization schemes. The error estimates of the scheme are proved in detail.
Numerical experiments in different circumstances are presented to demonstrate the
capabilities of the method.

AMS subject classifications: 65N30, 35J47, 35G15
Key words: Finite-strain, static bending problem, discontinuous Galerkin methods, numerical
fluxes, error estimates.

1 Introduction

In this paper, we present a discontinuous Galerkin (DG) method for a finite-strain plate
model [20]:

1
2

Ē[(1−ν)∆u+(1+ν)(ux+vy)x]− Ēh̄∆wx+ f1=0, (1.1a)

1
2

Ē[(1−ν)∆v+(1+ν)(ux+vy)y]− Ēh̄∆wy+ f2=0, (1.1b)

− Ēh̄∆(ux+vy)+
2
3

Ēh̄2∆2w+ f3=0, (1.1c)

with boundary condition

u
∣∣
∂Ω = g1, v

∣∣
∂Ω = g2, (1.2a)

w
∣∣
∂Ω = g3, ∇w·n

∣∣
∂Ω = g4, (1.2b)
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where 2h̄ represents the thickness of the plate, Ē= E/(1−ν2) with Young’s modulus E
and ν denotes the Poisson’s ratio.

This model describes the steady state of a finite-strain isotropic plate with compres-
sion and limitation. Different from traditional plate equation, this model consider the
plate with a certain thickness. Due to the definition of Poisson’s ratio, we know that
if a sample of material is stretched in one direction, it tends to get thinner in the other
two directions. It reminds us to consider the offset along plate surface when the plate
vibrates. In this case, Song Zilong and Dai Hui-Hui starts from the three-dimensional
field equations for a compressible hyperelastic material, by a series expansion about the
bottom surface, they deduce a vector dynamic plate equation with three unknowns, then
eliminate all the time dependent terms and get a static bending problem, which is this
model.

Although there are abundant models for thin plates, the model in (1.1) is different.
Comparing with the classical theory [22], the system (1.1) has the same order with similar
four boundary conditions, and the equation for the transverse displacement w can be
decoupled from the other two for the isotropic static case.

1
2
[(1−ν)∆u+(1+ν)(ux+vy)x]− h̄∆wx =F1, (1.3a)

1
2
[(1−ν)∆v+(1+ν)(ux+vy)y]− h̄∆wy =F2, (1.3b)

∆2w=F3. (1.3c)

Moreover, the present model produces more accurate results for deflection in this static
bending problem. The another model in [16] produces significant accurate deflection in
the static bending problem, but it’s more complex. It involves five unknowns and needs
five boundary conditions at each edge point. Further more, we know that Reddy’s plate
theory [17] is a good theory, it inherits the merits of the theory in [16] and avoids the
need for shear correction factor. It also successfully captures the quadratic distribution of
shear stresses in the bending mode as the present one, but at the expense of its complex-
ity. Specifically, it involves five unknowns and needs six boundary conditions (on the
edge) with also an indispensable higher-order stress resultant. In contrast, the present
theory entails only well-known physical quantities on the boundary. Also, the present
theory produces more accurate distributions for all concerned quantities, and is expected
to apply to more general loadings.

In this paper, we will develop and analysis discontinuous Galerkin (DG) methods for
the system (1.3). The DG methods for high order spatial derivatives have been intensively
investigated, such as local discontinuous Galerkin (LDG) methods [10], Baumann-Oden
DG methods [1], direct discontinuous Galerkin methods [14, 15], inner penalty Galerkin
methods [3, 4, 7, 13, 19, 21, 33], conforming DG methods [29–31], etc. In this paper, the
DG framework is mainly enlightened by the work [8], in which Cockburn and Dong Bo
constructed a LDG scheme for convection-diffusion problem.


