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Abstract

We study spatially semidiscrete and fully discrete two-scale composite finite element

method for approximations of the nonlinear parabolic equations with homogeneous Dirich-

let boundary conditions in a convex polygonal domain in the plane. This new class of finite

elements, which is called composite finite elements, was first introduced by Hackbusch and

Sauter [Numer. Math., 75 (1997), pp. 447-472] for the approximation of partial differential

equations on domains with complicated geometry. The aim of this paper is to introduce

an efficient numerical method which gives a lower dimensional approach for solving par-

tial differential equations by domain discretization method. The composite finite element

method introduces two-scale grid for discretization of the domain, the coarse-scale and

the fine-scale grid with the degrees of freedom lies on the coarse-scale grid only. While

the fine-scale grid is used to resolve the Dirichlet boundary condition, the dimension of

the finite element space depends only on the coarse-scale grid. As a consequence, the

resulting linear system will have a fewer number of unknowns. A continuous, piecewise

linear composite finite element space is employed for the space discretization whereas the

time discretization is based on both the backward Euler and the Crank-Nicolson methods.

We have derived the error estimates in the L∞(L2)-norm for both semidiscrete and fully

discrete schemes. Moreover, numerical simulations show that the proposed method is an

efficient method to provide a good approximate solution.
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1. Introduction

The main purpose of this work is to formulate and study the semidiscrete and fully discrete

composite finite element (CFE) approximations of solutions of nonlinear parabolic problem

with the Dirichlet boundary condition. In [21], Rech, Sauter and Smolianski have studied CFE

method for elliptic problems with Dirichlet boundary conditions, where they have improved

upon the error estimation using finer-scale discretization for the slave nodes. We consider the

following model nonlinear parabolic initial-boundary value problem, for u = u(x, t),

ut −∇ · (a(u)∇u) = f(u) in Ω× J, J = (0, T ],

u = 0 on Γ× J,
with u(·, 0) = v in Ω,

(1.1)
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where, Ω is a bounded domain in R2 with Lipschitz boundary Γ, v : R2 → R, a : R → R and

f : R → R are given functions. Let the known smooth functions a(u) and f(u) satisfy the

following condition:

0 < µ ≤ a(u) ≤M, |a′(u)|+ |f ′(u)| ≤ B for u ∈ R. (1.2)

Under the above conditions, we assume that the above problem admits a unique solution which

is sufficiently smooth.

The CFE method was initially introduced for coarse level discretizations of boundary value

problems (cf. [9–11]). The purpose of this paper is to generalize certain known error estimates of

two-scale CFE approximation for elliptic problems to the time dependent parabolic initial and

boundary value problems. In standard finite element method (FEM), the usual requirement

is that the underlying finite element mesh has to resolve the domain boundary. However,

discretization of the domain with a coarse-scale mesh includes huge number of unknowns. In

other words, it increases the dimension of the finite element space. Therefore, we introduces

the CFE method via two-scale grid discretization: In the interior of the domain at a proper

distance from the boundary the solution is approximated by the coarse-scale parameter H

and the vicinity of the boundary is discretized by the fine-scale parameter h to approximate

the Dirichlet boundary conditions until a sufficient approximation quality is reached [8, 24].

The CFE method can be illustrated as a generalization of standard finite elements, where

we approximate the Dirichlet boundary conditions in a flexible adaptive manner [6, 14]. The

degrees of freedom (Dofs) lies only on the coarse-scale grid in the interior of the domain. This

causes a reduction of dimension of the CFE space, which is very advantageous in contrast to

the standard FEM.

In this paper, we consider two-scale CFE method for the domain discretization of solving

nonlinear parabolic problems (1.1), which allows low-dimensional discretization for the domain

while the convergence rates are preserved. In the finite element literature the term “composite”

has also appeared in composite triangles (cf. [7,27]). Our approach is to introduce composite fi-

nite elements for an adaptive approximation of Dirichlet boundary conditions. Composite finite

elements build the necessary adaptation into basis functions. Far from the domain boundary,

the basis functions coincide with the standard basis functions on the structured grid. In the

vicinity of the boundary, the standard basis is modified to resolve the shape of the domain

boundary. Related approaches for coarsening the meshes can be found in [3, 13, 29]. The CFE

method for parabolic problems in both convex and nonconvex domains has been extensively

studied, see [16, 18, 19]. The convergence properties in the L∞(L2)-norm for both semidiscrete

and fully discrete methods are derived and analyzed. To the best of author’s knowledge, the

two-scale CFE method for solving nonlinear parabolic problems in convex domains is being

reported for the first time in the literature.

Outline of the article. The paper is organized as follows. Section 2 introduces the CFE

discretization and locating the degrees of freedom as well as the slave nodes. The extrapolation

operator is defined in this section in order to construct the CFE space. Section 3 is devoted to

construct the CFE space. In this section, we construct the CFE nodal basis function and show

the existence and uniqueness of the CFE solution for the spatially semidiscrete approximation of

the given problem (1.1). In section 4, we derive the error estimates for the spatially semidiscrete

scheme. Section 5 provides the fully discrete error analysis for both the backward Euler and

the Crank-Nicolson schemes. Also, the error analysis for linearized modification in both the

backward Euler and the Crank-Nicolson schemes are presented in this section. Section 6 presents


