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AN EFFECTIVE ALGORITHM FOR COMPUTING

FRACTIONAL DERIVATIVES AND APPLICATION TO

FRACTIONAL DIFFERENTIAL EQUATIONS
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Abstract. In recent years, fractional differential equations have been extensively applied to

model various complex dynamic systems. The studies on highly accurate and efficient numerical
methods for fractional differential equations have become necessary. In this paper, an effective
recurrence algorithm for computing both the fractional Riemann-Liouville and Caputo derivatives
is proposed, and then spectral collocation methods based on the algorithm are investigated for

solving fractional differential equations. By the recurrence method, the numerical stability with
respect to N , the number of collocation points, can be improved remarkably in comparison with
direct algorithm. Its robustness ensures that a highly accurate spectral collocation method can

be applied widely to various fractional differential equations.
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1. Introduction

Fractional differential equations (FDEs) have been applied widely in many re-
cent studies in applied mathematics, theoretical physics and mechanics, biology,
and economics [22, 23, 30, 31]. The fractional derivative is a powerful tool to
describe complex systems that have long memory and long-range spatial inter-
actions. In general, however, numerical methods for fractional derivatives and
fractional differential equations suffer from heavy costs of computing due to their
nature of non-locality. Therefore, numerical study on fractional differential equa-
tions by highly accurate and efficient methods is an imperative task. The spectral
method, which is suitable for the discretization of the fractional derivative as a
global scheme, has begun to draw more and more attentions from scientific re-
searchers [1, 14, 16, 20, 34, 35, 38, 39, 40].

However, one has to overcome two main difficulties for the spectral method
dealing with FDEs: one is the computation of fractional derivatives, and the other
is the singularity of the solution of FDEs. Indeed, both difficulties are related with
the choice of basis functions the spectral method adopted. Today, it is clear that the
use of fractional Jacobi functions (also are called the generalized Jacobi functions)
as basis functions is more suitable to deal with the singularity of the solution [3,
6, 7, 10, 32, 33]. Nevertheless, the classical polynomial basis is convenient for
the computations of FDEs and also to the analysis of spectral approximation [11,
15, 29]. Moreover, using the polynomials as basis function is still highly accurate
compared with the other numerical methods, such as finite difference method and
finite element method [15]. It is worthwhile to note that some authors engaged in
high order methods for the discretization of fractional derivatives, see [17, 18] and
the recent works [8, 19] for example.

In this paper, we are concerned with developing an effective algorithm for com-
puting fractional derivatives. The classical polynomials are still adopted here due
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to the consideration that the singularity near boundary can be overcome by the
spectral element method based on polynomials, see the recent paper [21] for de-
tails. Several recurrence methods are proposed for the computation of the left- and
right- Riemann-Liouville fractional derivatives and the left- and right- Caputo frac-
tional derivatives here. Especially, we compare the stability of our method to one
of the direct methods [4, 5, 11, 26]. Then, some applications based on the spectral
collocation method are presented. Meanwhile, a comparison with the collocation
method based on fractional Jacobi functions [32, 33] is performed.

In [15], Li, Zeng and Liu developed a recurrence method to compute fractional
integrals and derivatives. Utilizing the three-term recurrence relation and the prop-
erty of Jacobi polynomials, the authors established a recurrence scheme for the com-
putation of fractional derivatives. In [37] the author presented a spectral/spectral
collocation method by using this recurrence method for solving the space fractional
diffusion equation. Anyway, the recurrence algorithm is worth further developing
for the spectral collocation method due to its high efficiency and accuracy.

We shall take a different route to compute the differentiation matrix in this
paper. The main idea comes from the fact that if f ∈ Pα,β

n (x), then it implies

∂xf ∈ Pα+1,β+1
n−1 (x), where Pα,β

n (x) designates the class of Jacobi polynomials.

Therefore, for the Chebyshev polynomials of the first kind with α = β = −1
2 , their

derivatives of the first order are the Chebyshev polynomials of the second kind with
α = β = 1

2 . Thus, some properties of the Chebyshev polynomials of the second
kind can be employed, and a simplified and effective recurrence algorithm for the
computation of fractional derivatives of the Chebyshev polynomials of the first kind
is then derived.

The paper is arranged as follows. In Section 2 we introduce the series expansion
of the Jacobi polynomials in detail starting from an eigenvalue problem, and present
the direct method for computing the fractional derivatives. The derivations of the
recurrence algorithms are presented in Section 3. In Section 4, the fractional differ-
entiation matrices are investigated, and then the approximated errors are proposed,
and several examples are presented to illustrate the stability of our method for large
polynomial degree. Some applications of our method are considered in Section 5.
Here, we mainly consider the multi-term fractional equations, time-space fractional
diffusion equations, and the Riesz fractional diffusion equations. We also consider
the non-smooth problem, and a comparison with the corrected backward formulae
is carried out in this section. Finally, some remarks and conclusions are presented
in Section 6.

2. Preliminaries

At first, we recall a fundamental result about the singular eigenvalue problem
and some useful analytical formulations of Jacobi polynomials for computation of
fractional derivatives(see also [5, 11, 15, 24]). Consider the following eigenvalue
problem

(1) (wφy′n)
′
(x) = λnw(x)yn(x).

where the weight function satisfies the Pearson equation (see [13] for details)

(wφ)′(x) = w(x)ψ(x)

and φ(x) = x2 + 2rx+ s, ψ(x) = 2px+ q, and the eigenvalue λn = n(n− 1 + 2p).

Lemma 2.1 ([12]). Let α > −1, β > −1, and r, s, p, q satisfy

2r = −a− b, s = ab, 2p = α+ β + 2, q = −a(β + 1)− b(α+ 1).


