A Lower Bound of the Genus of a Self-amalgamated 3-manifolds*

Li Xu^{1} and Lei Feng-Chun ${ }^{2}$
(1. Department of Mathematics, Harbin Institute of Technology, Harbin, 150001)
(2. School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024)

Abstract

Let M be a compact connected oriented 3-manifold with boundary, $Q_{1}, Q_{2} \subset \partial M$ be two disjoint homeomorphic subsurfaces of ∂M, and $h: Q_{1} \rightarrow Q_{2}$ be an orientation-reversing homeomorphism. Denote by M_{h} or $M_{Q_{1}=Q_{2}}$ the 3manifold obtained from M by gluing Q_{1} and Q_{2} together via $h . M_{h}$ is called a self-amalgamation of M along Q_{1} and Q_{2}. Suppose Q_{1} and Q_{2} lie on the same component F^{\prime} of ∂M^{\prime}, and $F^{\prime}-Q_{1} \cup Q_{2}$ is connected. We give a lower bound to the Heegaard genus of M when M^{\prime} has a Heegaard splitting with sufficiently high distance.

Key words: self-amalgamation, distance, Heegaard genus
2000 MR subject classification: 57 M 99
Document code: A
Article ID: 1674-5647(2011)01-0047-06

1 Introduction

Let M be a compact connected oriented 3-manifold with boundary, $Q_{1}, Q_{2} \subset \partial M$ be two disjoint homeomorphic subsurfaces of ∂M, and $h: Q_{1} \rightarrow Q_{2}$ be an orientation-reversing homeomorphism. Denote by M_{h} or $M_{Q_{1}=Q_{2}}$ the 3-manifold obtained from M by gluing Q_{1} and Q_{2} together via $h . \quad M_{h}$ is called a self-amalgamation of M along Q_{1} and Q_{2}. Usually, $Q=Q_{1}=Q_{2}$ is a non-separating surface properly embedded in M_{h}, and M can be reobtained from M_{h} by cutting M_{h} open along Q.

An interesting problem is how the genus of M_{h} is related to that of M. Here are partial related results:

Theorem 1.1 ${ }^{[1]}$ Let M be a compact orientable 3-manifold, and Q a non-separating incompressible closed surface in M. Let M^{\prime} be the 3-manifold obtained by cutting M open along Q. Suppose M^{\prime} admits a Heegaard splitting $V^{\prime} \cup_{S^{\prime}} W^{\prime}$ with $d\left(S^{\prime}\right) \geq 2 g\left(M^{\prime}\right)$. Then $g(M) \geq g\left(M^{\prime}\right)-g(F)$.

[^0]Theorem 1.2 ${ }^{[2]}$ Let M be a closed orientable 3-manifold, and Q a non-separating incompressible closed surface in M. Let M^{\prime} be the 3-manifold obtained by cutting M open along Q. Suppose M^{\prime} admits a Heegaard splitting $V^{\prime} \cup_{S^{\prime}} W^{\prime}$ relative to ∂M^{\prime} with $d\left(S^{\prime}\right)>$ $2\left(g\left(M^{\prime}, \partial M^{\prime}\right)+2 g(Q)\right)$. Then M has a unique minimal Heegaard splitting, i.e., the selfamalgamation of $V^{\prime} \cup_{S^{\prime}} W^{\prime}$.

Both Theorems 1.1 and 1.2 deal with the case in which the non-separating surface is closed. In the present paper, we consider the situation in which the non-separating surface is with boundary. We obtain a lower bound of the genus of the self-amalgamated 3-manifold under some condition in terms of distances of the previous Heegaard splittings.

The paper is organized as follows. In Section 2, we review some preliminaries which is used later. The statement of the main result and its proof are included in Section 3. All 3 -manifolds in this paper are assumed to be compact and orientable.

2 Preliminaries

In this section, we review some fundamental facts on surfaces in 3-manifolds. Definitions and terms which have not been defined are all standard, and the reader is referred to, for example, [3].

A Heegaard splitting of a 3-manifold M is a decomposition

$$
M=V \cup_{S} W
$$

in which V and W are compression bodies such that

$$
V \cap W=\partial_{+} V=\partial_{+} W=S
$$

and

$$
M=V \cup W
$$

S is called a Heegaard surface of M. The genus $g(S)$ of S is called the genus of the splitting $V \cup_{S} W$. We use $g(M)$ to denote the Heegaard genus of M, which is equal to the minimal genus of all Heegaard splittings of M. A Heegaard splitting $V \cup_{S} W$ for M is minimal if $g(S)=g(M) . V \cup_{S} W$ is said to be weakly reducible (see [4]) if there are essential disks $D_{1} \subset V$ and $D_{2} \subset W$ with $\partial D_{1} \cap \partial D_{2}=\emptyset$. Otherwise, $V \cup_{S} W$ is strongly irreducible.

Let

$$
M=V \cup_{S} W
$$

be a Heegaard splitting, α and β be two essential simple closed curves in S. The distance $d(\alpha, \beta)$ of α and β is the smallest integer $n \geq 0$ such that there is a sequence of essential simple closed curves

$$
\alpha=\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}=\beta
$$

in S with $\alpha_{i-1} \cap \alpha_{i}=\emptyset$, for $1 \leq i \leq n$. The distance of the Heegaard splitting $V \cup_{S} W$ is defined to be

$$
d(S)=\min \{d(\alpha, \beta)\}
$$

[^0]: *Received date: Sept. 11, 2009.
 Foundation item: The NSF (15071034) of China.

