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Abstract: For the data with error of measurement in historical samples, the em-
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1 Introduction

Empirical Bayes (EB) approach has been studied extensively by the researchers, and the

readers are referred to literature [1]–[8].

Data with error of measurement take place in many fields, including biology, ecology,

geology and medicine (see [9]–[10]). Up to now, empirical Bayes test problem for the pa-

rameter of distribution with error of measurement has not been studied by any researcher.

Rayleigh distribution plays an important role in reliability analysis. In this paper, we dis-

cuss the empirical Bayes test for the parameter of Rayleigh distribution with error data of

measurement.

Let X have a conditional density function

f(x | θ) =
x

θ2
e−

x2

2θ2 , (1.1)

where θ is an unknown parameter. Denote the sample space by x ∈ Ω = {x | x > 0} and
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parameter space by Θ = {θ | θ > 0}. In this paper, we discuss the one-sided test problem

H0 : θ ≤ θ0 ⇐⇒ H1 : θ > θ0, (1.2)

where θ0 is a given positive constant.

To construct EB test function, we have firstly loss functions

L0(θ, d0) =






0, θ ≤ θ0;

a
[
1 −

(θ0

θ

)2]
, θ > θ0,

L1(θ, d1) =





a
[(θ0

θ

)2

− 1
]
, θ ≤ θ0;

0, θ > θ0,

where a > 0, d = {d0, d1} is action space, d0 and d1 imply acceptance and rejection of H0.

Assume that the prior distribution G(θ) of θ is unknown. Then we have the randomized

decision function

δ(x) = P (accept H0 | X = x). (1.3)

And the risk function of δ(x) is shown by

R(δ(x), G(θ)) =

∫

Θ

∫

Ω

[L0(θ, d0)f(x | θ)δ(x) + L1(θ, d1)f(x | θ)(1 − δ(x))]dxdG(θ)

= a

∫

Ω

β(x)δ(x)dx + CG, (1.4)

where

CG =

∫

Θ

L1(θ, d1)dG(θ), β(x) =

∫

Θ

[
1 −

(θ0

θ

)2]
f(x | θ)dG(θ). (1.5)

The marginal density function of X is given by

fG(x) =

∫

Θ

f(x | θ)dG(θ) =

∫

Θ

x

θ2
e−

x2

2θ2 dG(θ).

By (1.5) and simple calculations, we have

β(x) = u(x)fG(x) + v(x)f
(1)
G (x), (1.6)

where f
(1)
G (x) is the first order derivative of fG(x), and

u(x) = 1 − 1

4
θ0x

−2, v(x) =
1

2
θ0x

−1.

Using (1.4), we obtain the Bayes test function as follows:

δG(x) =

{
1, β(x) ≤ 0;

0, β(x) > 0.
(1.7)

Further, we can get the minimum Bayes risk

R(G) = inf
δ

R(δ, G) = R(δG, G) = a

∫

Ω

β(x)δG(x)dx + CG. (1.8)

When the prior distribution of G(θ) is known and δ(x) = δG(x), R(G) can be obtained.

However, when G(θ) is unknown, so that δG(x) cannot be made use of, we need to introduce

EB method.

2 Construction of EB Test Function

Under the following assumptions, we are to construct the EB test function. Let (X1, θ1),

(X2, θ2), · · · , (Xn, θn) and (Xn+1, θn+1)=̂(X, θ) be independent random vectors, where θi

(i = 1, · · · , n) and θ are indepently identically distributed (i.i.d.) and have common prior

distribution G(θ). Let X1, X2, · · · , Xn, X be sequence of mutually independent random


