Characterizing Continuous dcpos by Liminf Convergence of Filters^{*}

WANG HUI AND ZHANG DE-XUE

(Department of Mathematics, Sichuan University, Chengdu, 610064)

Communicated by Du Xian-kun

Abstract: It is proved in this note that, under a mild assumption, a dcpo L is continuous if and only if the liminf convergence on L is topological.
Key words: continuous dcpo, meet continuous dcpo, convergence space, limit space, pretopological space, S-convergence, liminf convergence
2000 MR subject classification: 06B35, 54A20
Document code: A
Article ID: 1674-5647(2011)01-0???-10

1 Introduction

The interaction between order theoretic and topological properties is an important topic in order theory (see [1]–[6]). A well-known result is that a dcpo L is continuous if and only if the S-convergence on L is topological. It is proved that in a continuous dcpo the liminf convergence of nets is topological and agrees with convergence in Lawson topology (see [1], Theorem III-3.17). The purpose of this note is to show that the converse is also true under a mild assumption. Precisely, for a strong meet continuous dcpo L, the liminf convergence of nets on L is topological if and only if L is continuous.

2 Convergence Spaces

This section recalls some basic notions of convergence spaces. For each set X, let F(X) denote the set of filters on X. For each $x \in X$, $\hat{x} = \{A \subseteq X \mid x \in A\}$ denotes the principal filter generated by $\{x\}$.

A convergence structure on X is a subset $\mathcal{T} \subseteq F(X) \times X$ subject to the following conditions:

(1) $(\hat{x}, x) \in \mathcal{T}$ for all $x \in X$;

(2) $(\mathcal{F}, x) \in \mathcal{T}, \mathcal{F} \subseteq \mathcal{G} \Longrightarrow (\mathcal{G}, x) \in \mathcal{T}.$

^{*}Received date: Dec. 29, 2009.

Foundation item: The NSF (10771147) of China.

The category of convergence spaces and continuous functions is denoted by Conv. It is well-known that Conv is topological over the category of sets (see [7]), and hence it is complete and cocomplete. In particular, the product $(X_1 \times X_2, \mathcal{T}_1 \times \mathcal{T}_2)$ of two convergence spaces (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) is given as follows: a filter \mathcal{F} on $X_1 \times X_2$ converges to (x_1, x_2) with respect to $\mathcal{T}_1 \times \mathcal{T}_2$ if and only if there exist $(\mathcal{F}_1, x_1) \in \mathcal{T}_1$ and $(\mathcal{F}_2, x_2) \in \mathcal{T}_2$ such that $\{A \times B \mid A \in \mathcal{F}_1, B \in \mathcal{F}_2\} \subseteq \mathcal{F}$. Note that here we use the symbol $\mathcal{T}_1 \times \mathcal{T}_2$ to denote the product convergence structure, not the cartesian product of \mathcal{T}_1 and \mathcal{T}_2 (as sets), which will cause no confusion.

Given a topological space X, $\mathcal{T} = \{(\mathcal{F}, x) \mid \mathcal{F} \to x\}$ is a convergence structure on X. This correspondence is indeed a functorial embedding of the category Top of topological spaces in Conv.

Let (X, \mathcal{T}) be a convergence space. **Definition 2.1**

(1) (X, \mathcal{T}) is called a Kent convergence space if

(K) $\mathcal{F} \to x \Longrightarrow \mathcal{F} \cap \hat{x} \to x.$

- (2) (X, \mathcal{T}) is called a limit space if (Lim) $\mathcal{F} \to x, \ \mathcal{G} \to x \Longrightarrow \mathcal{F} \cap \mathcal{G} \to x.$
- (3) (X, \mathcal{T}) is called a pretopological space if (PrT) $\mathcal{F}_j \to x, \forall t \in J \Longrightarrow \bigcap_{j \in J} \mathcal{F}_j \to x.$ (4) (X, \mathcal{T}) is called topological if \mathcal{T} is generated by some topology on X.

It is clear that every topological convergence space is pretopological, every pretopological space is a limit space, and every limit space is a Kent convergence space. The full subcategories consisting of Kent convergence spaces, limit spaces, and pretopological spaces are denoted respectively by KConv, Lim, and PrTop. Then

 $Top \subset PrTop \subset Lim \subset KConv \subset Conv.$

It is well known (e.g., [8]) that every category in the above diagram contains the preceding ones as reflective subcategories.

3 S-convergence

A dcpo is a partially ordered set L such that every directed set $D \subseteq L$ has a supremum. We write DCPO for the category of dcpos and functions that preserve directed suprema.

Definition 3.1 Let \mathcal{F} be a filter on a dcpo L.

(1) $z \in L$ is an eventual lower bound of \mathcal{F} if $\uparrow z \in \mathcal{F}$.

(2) \mathcal{F} S-converges to $x \in L$ (in symbols, $\mathcal{F} \to_S x$) if there exists a directed set D contained in the eventual lower bounds of \mathcal{F} with $x \leq \sup D$.