On the Gracefulness of Graph $(jC_{4n}) \cup P_m^*$

ZHANG ZHI-SHANG¹, ZHANG QING-CHENG² AND WANG CHUN-YUE¹

(1. School of Applied Sciences, Jilin Teachers Institute of Engineering and Technology, Changchun, 130052)

(2. School of Mathematics and Statistics, Northeast Normal University, Changchun, 130032)

Communicated by Lei Feng-chun

Abstract: The present paper deals with the gracefulness of unconnected graph $(jC_{4n}) \cup P_m$, and proves the following result: for positive integers n, j and m with $n \ge 1, j \ge 2$, the unconnected graph $(jC_{4n}) \cup P_m$ is a graceful graph for m = j - 1 or $m \ge n + j$, where C_{4n} is a cycle with 4n vertexes, P_m is a path with m + 1 vertexes, and $(jC_{4n}) \cup P_m$ denotes the disjoint union of $j - C_{4n}$ and P_m . Key words: graceful labeling, graceful graph, path, cycle, disjoint union 2000 MR subject classification: 05C78 Document code: A Article ID: 1674-5647(2011)02-0139-08

1 Introduction

Most graceful graphs and graceful labeling methods trace their origin to a work by Rosa^[1] in 1967. However, the term "graceful labeling" were not used until Golomb gave such labelings several years later (see [2]). The graceful labelings were introduced by Gallian^[3]. The gracefulness of graphs is connected with the graceful labeling. Dong^[4] proved that the graph $C_{4n} \cup C_{4n} \cup P_m$ is graceful for $4n \le m \le 4n + 2$. On the basis of these theories, we prove that the graph $(jC_{4n}) \cup P_m$, which denotes the disjoint union of $j - C_{4n}$ and P_m , is graceful for all n and m = j - 1 or $m \ge j + n$. When studying graceful labelings, we only consider simple graphs, i.e., graphs without loops or parallel edges.

2 Preliminaries

Definition 2.1^[2] A graph G(V, E) is called graceful if for any $v \in V$ there exists a nonnegative integer f(v) satisfying the following conditions: (1) man f(v) = V

(1) $\max\{f(v)|v \in V\} = |E(G)|;$

^{*}Received date: Nov. 11, 2009.

(3) for any $e_1, e_2 \in E(G)$ with $e_1 \neq e_2, f'(e_1) \neq f'(e_2),$

where f(v) is called to the labeling of the vertex v, f is a graceful value (or called graceful labeling), f'(e) = |f(u) - f(v)|, and uv = e are called edge labelings.

Definition 2.2^[5] Let f be a graceful labeling of the graceful bipartite graph G = (X, Y, E). If $\max_{u \in X} \{f(u)\} < \min_{v \in Y} \{f(v)\}$, then G is an alternating graph.

Lemma 2.1^[5] The cycle C_{4n} is a graceful graph and the graceful labeling θ is as follows:

$$\begin{cases} \theta(x_{2k}) = 4n - k + 1, & k = 1, 2, \cdots, 2n; \\ \theta(x_{2k-1}) = k - 1, & k = 1, 2, \cdots, n; \\ \theta(x_{2k-1}) = k, & k = n + 1, n + 2, \cdots, 2n. \end{cases}$$
(2.1)

Lemma 2.2^[6] Let $P_m = v_0v_1 \cdots v_m$ be a path of length m. If m is an odd number, then there exists an alternating labeling f of P_m such that $f(v_0) = k$ for any $k \in \{0, 1, \cdots, m\}$. If m is an even number, then there exists an alternating labeling f of P_m such that $f(v_0) = k$ for any $k \in \{0, 1, \cdots, m\}$ and $k \neq \frac{m}{4}, \frac{3m}{4}$.

Lemma 2.3 Let $P_{4k} = v_0 v_1 \cdots v_{4k}$ be a path. If m = 4k, then there exists a graceful labeling f of P_{4k} such that $f(v_0) = k = \frac{m}{4}$, and there exists a graceful labeling g of P_{4k} such that $g(v_0) = 3k$.

Proof. Put a vertex labeling f of the path $P_{4k} = v_0 v_1 \cdots v_{4k}$ as follows:

$$\begin{cases} f(v_{2n}) = k - n, & n = 0, 1, \cdots, k; \\ f(v_{2n}) = k + n, & n = k + 1, k + 2, \cdots, 2k; \\ f(v_{2n-1}) = 3k + n, & n = 1, 2, \cdots, k; \\ f(v_{2n-1}) = 3k - n + 1, & n = k + 1, k + 2, \cdots, 2k. \end{cases}$$

$$(2.2)$$

Clearly, f is a graceful labeling of the path $P_{4k} = v_0 v_1 \cdots v_{4k}$ such that $f(v_0) = k$ holds. Let

$$g(u) = |E(P_{4k})| - f(u) = 4k - f(u), \qquad u \in V(P_{4k}).$$

Then g is another graceful labeling such that

$$g(v_0) = 4k - f(v_0) = 3k.$$

From Lemmas 2.2 and 2.3 we have

Lemma 2.4 Let $P_m = v_0 v_1 \cdots v_m$ be a path. Then there exists a graceful labeling f such that $f(v_0) = n$ for any $n \in \{0, 1, \cdots, m\}$.

3 The Gracefulness of Graph $(jC_{4n}) \cup P_m$

Theorem 3.1 Let $n \ge 1$, $j \ge 2$. Then the graph $(jC_{4n}) \cup P_m$ is graceful for m = j - 1or $m \ge n + j$.