Rational Invariants of the Generalized Classical Groups^{*}

NAN JI-ZHU¹ AND ZHAO JING²

 Scholl of Mathematical Science, Dalian University of Technology, Dalian, Liaoning, 116024)
 College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning, Guangxi, 530006)

Communicated by Du Xian-kun

Abstract: In this paper, we give transcendence bases of the rational invariants fields of the generalized classical groups and their subgroups B, N and T, and we also compute the orders of them. Furthermore, we give explicit generators for the rational invariants fields of the Borel subgroup and the Neron-Severi subgroup of the general linear group.

Key words: generalized classical group, BN-pair, invariant, finite field2000 MR subject classification: 12F20, 20G40Document code: A

Article ID: 1674-5647(2011)02-0???-12

1 Introduction

Invariants are the important objects, used to study the geometric properties of the groups, and they have been extensively studied (see, for example, [1]–[5]). An important Noether's problem asks whether the invariant field $K(X_1, \dots, X_n)^G$ is purely transcendental over K. When K is a finite field, Dickson^[1] answered the question for the general linear group by giving explicit generators. Then Carlisle and Kropholler^[2] found explicit generators for $F_{q^2}(X_1, \dots, X_n)^{U_n(F_{q^2})}$ and $F_q(X_1, \dots, X_n)^{O_n(F_q,Q)}$.

Definition 1.1^[6] (1) Let F_q be a finite field and H be an invertible skew-symmetric matrix. The generalized symplectic group is defined to be

 $GSp_{2\nu}(F_q, H) = \{ P \in GL_n(F_q) \mid PHP^t = \lambda H \text{ for some } \lambda \in F_q^* \}.$

Without being mentioned explicitly, we often omit to mention the form of the invertible skew-symmetric matrix H and $GSp_{2\nu}(F_q, H)$ is just simply denoted by $GSp_{2\nu}(F_q)$.

^{*}Received date: Oct. 22, 2009.

Foundation item: The NSF (10771023) of China.

 $GO_n(F_q, H) = \{ P \in GL_n(F_q, H) \mid PHP^t = \lambda H \text{ for some } \lambda \in F_q^* \},$ and it is simply denoted by $GO_n(F_q)$.

(3) Let F_{q^2} be a finite field with char $F_{q^2} \neq 2$. F_{q^2} has an involutive automorphism, i.e., an automorphism of order 2, which is given by

$$a \longmapsto \bar{a} = a^q,$$

and the fixed field of this automorphism is F_q . Let H be an invertible matrix such that $H^t = \overline{H}$. The generalized unitary group is defined to be

 $GU_n(F_{q^2}, H) = \{ P \in GL_n(F_q) \mid \bar{P}HP^t = \lambda H \text{ for some } \lambda \in F_q^* \},\$ which is simply denoted by $GU_n(F_{q^2})$.

Next, we discribe the actions of matrix on the rational functions.

Let F_q be a finite field with char $F_q = p$ and $GL_n(F_q)$ be the general linear group. For any $T \in GL_n(F_q)$, T induces an F_q -linear action σ_T on the rational function field which is defined by

 $\sigma_T(f(X_1,\cdots,X_n)) = f(\sigma_T(X_1),\cdots,\sigma_T(X_n)), \qquad f(X_1,\cdots,X_n) \in F_q(X_1,\cdots,X_n),$

where

$$\sigma_T(X_i) = t_{i1}X_1 + t_{i2}X_2 + \dots + t_{in}X_n, \qquad T = (t_{ij}), \ i, j = 1, 2, \dots, n.$$

We have known that (see [7])

$$F_q(X_1,\cdots,X_n)^{Sp_n(F_q,H)} = F_q(P_{n1},\cdots,P_{nn}),$$

where

$$P_{nk} = \sum_{1 \le i,j \le n} a_{ij} X_i X_j^{q^k},$$

$$H = (a_{ij}), \quad H^t = -H, \qquad 1 \le i,j \le n, \ k = 1,2,\cdots,n;$$

$$F_q(X_1,\cdots,X_n)^{O_n(F_q,H)} = F_q(Q_{n0},\cdots,Q_{n,n-1}),$$

where

$$Q_{nk} = \sum_{1 \le i,j \le n} c_{ij} X_i X_j^{q^k},$$

$$H = (c_{ij}), \quad H^t = H, \qquad 1 \le i,j \le n, \ k = 0, 1, \cdots, n-1,$$

and

$$F_{q^2}(X_1, \cdots, X_n)^{U_n(F_{q^2}, H)} = F_q(R_{n0}, \cdots, R_{n, n-1}),$$

where

$$R_{nk} = \sum_{1 \le i,j \le n} d_{ij} X_i^{p^t} X_j^{q^k},$$
$$H = (d_{ij}), \quad H^t = \bar{H}, \qquad 1 \le i,j \le n, \ k = 0, 1, \cdots, n-1.$$

We consider the rational invariants of the generalized classical groups and their subgroups B, N and T.