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Abstract: In this paper, we give transcendence bases of the rational invariants fields

of the generalized classical groups and their subgroups B, N and T , and we also

compute the orders of them. Furthermore, we give explicit generators for the rational

invariants fields of the Borel subgroup and the Neron-Severi subgroup of the general

linear group.
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1 Introduction

Invariants are the important objects, used to study the geometric properties of the groups,

and they have been extensively studied (see, for example, [1]–[5]). An important Noether’s

problem asks whether the invariant field K(X1, · · · , Xn)G is purely transcendental over K.

When K is a finite field, Dickson[1] answered the question for the general linear group by

giving explicit generators. Then Carlisle and Kropholler[2] found explicit generators for

Fq2(X1, · · · , Xn)Un(F
q2 ) and Fq(X1, · · · , Xn)On(Fq,Q).

Definition 1.1[6] (1) Let Fq be a finite field and H be an invertible skew-symmetric

matrix. The generalized symplectic group is defined to be

GSp
2ν

(Fq , H) = {P ∈ GLn(Fq) | PHP t = λH for some λ ∈ F ∗
q }.

Without being mentioned explicitly, we often omit to mention the form of the invertible

skew-symmetric matrix H and GSp
2ν

(Fq , H) is just simply denoted by GSp
2ν

(Fq).
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(2) Let Fq be a finite field with charFq 6= 2 and H be an invertible symmetric matrix.

The generalized orthogonal group is defined to be

GOn(Fq, H) = {P ∈ GLn(Fq, H) | PHP t = λH for some λ ∈ F ∗
q },

and it is simply denoted by GOn(Fq).

(3) Let Fq2 be a finite field with charFq2 6= 2. Fq2 has an involutive automorphism, i.e.,

an automorphism of order 2, which is given by

a 7−→ ā = aq,

and the fixed field of this automorphism is Fq. Let H be an invertible matrix such that

Ht = H̄. The generalized unitary group is defined to be

GUn(Fq2 , H) = {P ∈ GLn(Fq) | P̄HP t = λH for some λ ∈ F ∗
q },

which is simply denoted by GUn(Fq2 ).

Next, we discribe the actions of matrix on the rational functions.

Let Fq be a finite field with charFq = p and GLn(Fq) be the general linear group. For

any T ∈ GLn(Fq), T induces an Fq-linear action σT on the rational function field which is

defined by

σT (f(X1, · · · , Xn)) = f(σT (X1), · · · , σT (Xn)), f(X1, · · · , Xn) ∈ Fq(X1, · · · , Xn),

where

σT (Xi) = ti1X1 + ti2X2 + · · ·+ tinXn, T = (tij), i, j = 1, 2, · · · , n.

We have known that (see [7])

Fq(X1, · · · , Xn)Spn(Fq,H) = Fq(Pn1, · · · , Pnn),

where

Pnk =
∑

1≤i,j≤n

aijXiX
qk

j ,

H = (aij), Ht = −H, 1 ≤ i, j ≤ n, k = 1, 2, · · · , n;

Fq(X1, · · · , Xn)On(Fq,H) = Fq(Qn0, · · · , Qn,n−1),

where

Qnk =
∑

1≤i,j≤n

cijXiX
qk

j ,

H = (cij), Ht = H, 1 ≤ i, j ≤ n, k = 0, 1, · · · , n− 1,

and

Fq2(X1, · · · , Xn)Un(F
q2 ,H) = Fq(Rn0, · · · , Rn,n−1),

where

Rnk =
∑

1≤i,j≤n

dijX
pl

i Xqk

j ,

H = (dij), Ht = H̄, 1 ≤ i, j ≤ n, k = 0, 1, · · · , n− 1.

We consider the rational invariants of the generalized classical groups and their subgroups

B, N and T .


