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Abstract: In this paper, we present a general method to prove the complete conver-

gence for arrays of rowwise strong mixing random variables, and give some results on

complete convergence under some suitable conditions. Some Marcinkiewicz-Zygmund

type strong laws of large numbers are also obtained.
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1 Introduction

Let {Ω , F , P} be a probability space, and {Xn : n ≥ 1} be a sequence of random variables

defined on this space.

Definition 1.1 The sequence {Xn : n ≥ 1} is said to be α-mixing or strong mixing if

α(n) = sup
m≥1

{|P (AB) − P (A)P (B)| : A ∈ Fm
−∞, B ∈ F∞

m+n} → 0 as n → ∞,

where Fn
m denotes the σ-field generated by {Xi : m ≤ i ≤ n}.

The strong mixing coefficient was introduced by Rosenblatt[1] and have been commonly

employed in establishing limiting results for time series and random fields (see [2]–[4]). Re-

cently, Genon-Gatahot et al.[5] showed that continuous time diffusion models and stochastic

volatility models were strong mixing. Strong mixing random variables, because of their wide
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applications, have been studied in many different aspects: the moment inequalities (see [6]–

[7]), the center limit theorem (see [8]), the strong approximation theorem (see [9]), and the

complete convergence (see [10]–[12]).

For α-mixing sequences, Hipp[10] presented the following result.

Theorem 1.1 Let 1/2 < α ≤ 1, 2 < r ≤ ∞, 1/α < p < r, and {Xn : n ≥ 1} be a strictly

stationary α-mixing sequence of random variables with EX1 = 0 and (E|X1|
r)1/r < ∞.

Assume that
∞
∑

n=1
α1/θ(n) < ∞ for some θ > [2 + r/(r − p)]pα/(pα − 1). Then

∞
∑

n=1

npα−2P

{

max
1≤i≤n
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∣
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i
∑

j=1

Xj

∣
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∣

}

≥ εnα

}

< ∞, ε > 0.

However, a contrary example to Hipp’s conclusion was given by Berbee[13] when r = ∞,

i.e., in the case of |X1| bounded. Shao[11] also showed that Theorem 1.1 is quite possibly

not true when r < ∞. In this paper, we present a general method to prove the complete

convergence for arrays of rowwise strong mixing random variables, and give some results on

complete convergence under some suitable conditions. Some Marcinkiewicz-Zygmund type

strong laws of large numbers are also obtained.

Now, we give two definitions needed in the further part of the paper.

Definition 1.2 An array {Xni : i ≥ 1, n ≥ 1} of random variables is said to be stochas-

tically dominated by a random variable X if there exists a constant D such that

P{|Xni| > x} ≤ DP{|X | > x}, x ≥ 0, i ≥ 1, n ≥ 1.

Definition 1.3 A real-valued function l(x), positive and measurable on [A,∞) for some

A > 0, is said to be slowly varying if

lim
x→∞

l(λx)

l(x)
= 1, λ > 0.

Throughout the sequel, C represents a positive constant although its value may change

from one appearance to the next; [x] indicates the maximum integer no larger than x; I[B]

denotes the indicator function of the set B and ‖X‖q = (E|X |q)1/q.

2 Main Results

The following lemmas are useful in our study.

Lemma 2.1[7] Let q > 2, δ > 0, and {Xn : n ≥ 1} be an α-mixing sequence of random

variable with EXi = 0 and E|Xi|
q+δ < ∞. Suppose that θ > q(q+δ)/(2δ) and α(n) ≤ Cn−θ

for some C > 0. Then, for any ǫ > 0, there exists a positive constant K = K(ǫ, q, δ, θ, C) <

∞ such that

E max
1≤j≤n

{∣

∣
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≤ K

{
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q +
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‖Xi‖
2
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)q/2}

.


