On Complete Convergence for Arrays of Rowwise Strong Mixing Random Variables*

Zhou Xing-cai ${ }^{1,2}$, Lin Jin-Guan ${ }^{1}$, Wang Xue-Jun ${ }^{3}$ and Hu Shu-he ${ }^{3}$
(1. Department of Mathematics, Southeast University, Nanjing, 210096)
(2. Department of Mathematics and Computer Science, Tongling University, Tongling, Anhui, 244000)
(3. School of Mathematical Science, Anhui University, Hefei, 230039)

Communicated by Wang De-hui

Abstract

In this paper, we present a general method to prove the complete convergence for arrays of rowwise strong mixing random variables, and give some results on complete convergence under some suitable conditions. Some Marcinkiewicz-Zygmund type strong laws of large numbers are also obtained.

Key words: complete convergence, rowwise dependence, strong mixing
2000 MR subject classification: 60G50, 60F15
Document code: A
Article ID: 1674-5647(2011)03-0234-09

1 Introduction

Let $\{\Omega, \mathcal{F}, P\}$ be a probability space, and $\left\{X_{n}: n \geq 1\right\}$ be a sequence of random variables defined on this space.

Definition 1.1 The sequence $\left\{X_{n}: n \geq 1\right\}$ is said to be α-mixing or strong mixing if

$$
\alpha(n)=\sup _{m \geq 1}\left\{|P(A B)-P(A) P(B)|: A \in \mathcal{F}_{-\infty}^{m}, B \in \mathcal{F}_{m+n}^{\infty}\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where \mathcal{F}_{m}^{n} denotes the σ-field generated by $\left\{X_{i}: m \leq i \leq n\right\}$.
The strong mixing coefficient was introduced by Rosenblatt ${ }^{[1]}$ and have been commonly employed in establishing limiting results for time series and random fields (see [2]-[4]). Recently, Genon-Gatahot et al. ${ }^{[5]}$ showed that continuous time diffusion models and stochastic volatility models were strong mixing. Strong mixing random variables, because of their wide

[^0]applications, have been studied in many different aspects: the moment inequalities (see [6][7]), the center limit theorem (see [8]), the strong approximation theorem (see [9]), and the complete convergence (see [10]-[12]).

For α-mixing sequences, Hipp ${ }^{[10]}$ presented the following result.
Theorem 1.1 Let $1 / 2<\alpha \leq 1,2<r \leq \infty, 1 / \alpha<p<r$, and $\left\{X_{n}: n \geq 1\right\}$ be a strictly stationary α-mixing sequence of random variables with $E X_{1}=0$ and $\left(E\left|X_{1}\right|^{r}\right)^{1 / r}<\infty$. Assume that $\sum_{n=1}^{\infty} \alpha^{1 / \theta}(n)<\infty$ for some $\theta>[2+r /(r-p)] p \alpha /(p \alpha-1)$. Then

$$
\sum_{n=1}^{\infty} n^{p \alpha-2} P\left\{\max _{1 \leq i \leq n}\left\{\left|\sum_{j=1}^{i} X_{j}\right|\right\} \geq \varepsilon n^{\alpha}\right\}<\infty, \quad \varepsilon>0
$$

However, a contrary example to Hipp's conclusion was given by Berbee ${ }^{[13]}$ when $r=\infty$, i.e., in the case of $\left|X_{1}\right|$ bounded. Shao ${ }^{[11]}$ also showed that Theorem 1.1 is quite possibly not true when $r<\infty$. In this paper, we present a general method to prove the complete convergence for arrays of rowwise strong mixing random variables, and give some results on complete convergence under some suitable conditions. Some Marcinkiewicz-Zygmund type strong laws of large numbers are also obtained.

Now, we give two definitions needed in the further part of the paper.
Definition 1.2 An array $\left\{X_{n i}: i \geq 1, n \geq 1\right\}$ of random variables is said to be stochastically dominated by a random variable X if there exists a constant D such that

$$
P\left\{\left|X_{n i}\right|>x\right\} \leq D P\{|X|>x\}, \quad x \geq 0, i \geq 1, n \geq 1
$$

Definition 1.3 A real-valued function $l(x)$, positive and measurable on $[A, \infty)$ for some $A>0$, is said to be slowly varying if

$$
\lim _{x \rightarrow \infty} \frac{l(\lambda x)}{l(x)}=1, \quad \lambda>0
$$

Throughout the sequel, C represents a positive constant although its value may change from one appearance to the next; $[x]$ indicates the maximum integer no larger than $x ; I[B]$ denotes the indicator function of the set B and $\|X\|_{q}=\left(E|X|^{q}\right)^{1 / q}$.

2 Main Results

The following lemmas are useful in our study.
Lemma 2.1 ${ }^{[7]}$ Let $q>2, \delta>0$, and $\left\{X_{n}: n \geq 1\right\}$ be an α-mixing sequence of random variable with $E X_{i}=0$ and $E\left|X_{i}\right|^{q+\delta}<\infty$. Suppose that $\theta>q(q+\delta) /(2 \delta)$ and $\alpha(n) \leq C n^{-\theta}$ for some $C>0$. Then, for any $\epsilon>0$, there exists a positive constant $K=K(\epsilon, q, \delta, \theta, C)<$ ∞ such that

$$
E \max _{1 \leq j \leq n}\left\{\left|\sum_{i=1}^{j} X_{j}\right|^{q}\right\} \leq K\left\{n^{\epsilon} \sum_{i=1}^{n} E\left|X_{i}\right|^{q}+\left(\sum_{i=1}^{n}\left\|X_{i}\right\|_{q+\delta}^{2}\right)^{q / 2}\right\}
$$

[^0]: *Received date: Dec. 16, 2009.
 Foundation item: The NSF (11040606M04) of Anhui Province and NSF (11001052, 10971097, 10871001) of China.

