# Cyclic Group Action of Composite Order on Indefinite 4-manifolds* 

Li Hong-Xia ${ }^{1}$ and Liu Xi-min ${ }^{2}$<br>(1. Department of Applied Mathematics, Shanghai Maritime University, Shanghai, 201306)<br>(2. Department of Mathematics, South China University of Technology, Guangzhou, 510641)

Communicated by Lei Feng-chun


#### Abstract

In this paper, we study the possibilities for several kinds of topological, locally linear cyclic group actions of non-prime order on some closed, simply connected 4-manifolds with indefinite intersection form. Especially, we discuss the existence of locally linear pseudofree $C_{9}$ action on this kind of 4 -manifolds.


Key words: periodic map, 4-manifold, indefinite, permutation representation
2000 MR subject classification: $57 \mathrm{~S} 25,57 \mathrm{M} 60$
Document code: A
Article ID: 1674-5647(2011)03-0200-07

## 1 Introduction

In the earlier study, Edmonds ${ }^{[1]}$ gave a collection of various consequences of the existence of finite cyclic group actions on simply connected topological 4-manifold. Especially, he obtained the nonexistence of locally linear involutions on certain 4-manifolds with positive definite intersection form. Edmonds ${ }^{[2]}$ explored the group actions on the $E_{8} 4$-manifolds. Based on these results, Edmonds ${ }^{[3]}$ studied the existence of locally linear cyclic group action with composite order on simply connected 4-manifold with positive definite intersection form. The purpose of this paper is to explore the possibilities for several kinds of topological, locally linear cyclic group actions of non-prime order on some closed, simply connected 4 -manifolds with indefinite intersection form.

The paper is organized as follows. In Section 2, we give some preliminaries such as transformation groups, the Lefschetz fixed point formula, the $G$-signature formula and some basic lemmas in number theory. In Section 3, we prove the main results of this paper.

[^0]
## 2 Notations and Preliminaries

Let $\Sigma_{n}$ be a permutation group, and

$$
\sigma=\left(p_{1}\right)\left(p_{2}\right) \cdots\left(p_{r}\right)
$$

a conjugacy class of $\Sigma_{n}$, where

$$
p_{i} \geq 1, \quad n=p^{1}+\ldots+p^{r}
$$

Let

$$
m=\operatorname{lcm}\left\{p_{1}, \cdots, p_{r}\right\}
$$

where lcm means the least common multiple. It is easy to see

$$
\sigma^{m}=\mathrm{Id}
$$

so $\sigma$ generates a cyclic group $C_{m}$ with order $m$. Such an action of $C_{m}$ on the set $\{1,2, \cdots, n\}$ determines a permutation representation of $C_{m}$ on $\mathbf{Z}^{n}$ which we describe as $\left(p_{1}\right)+\left(p_{2}\right)+$ $\cdots+\left(p_{r}\right)$ in the following text.

Let $G$ be a locally linear action on 4 -manifold $X$. Then for each point $x \in X$ there is a neighborhood on which the action of $G_{x}$ is equivalent to a linear action on some euclidean space, where $G_{x}$ denotes the isotropy group of $x$. Besides, if $G_{x} \approx C_{m}$, where $m$ is odd, then the fixed point $x \in X$ has a local representation type which can be described by a pair of nonzero ordered integers $(a, b)$. If we fix a generator $g \in G_{x}$, then the action of $g$ is $(z, w) \rightarrow\left(\zeta^{a} z, \zeta^{b} w\right)$, where

$$
\zeta=\exp \{2 \pi \mathrm{i} / m\}
$$

A group action is said to be pseudofree if each nontrivial group element has a discrete fixed point set.

For the general theory about transformation groups we refer to [4] and [5].
Let $g: X \rightarrow X$ generate an action of $C_{m}$ on a closed, simply connected 4-manifold $X$. By the Local Smith theory, $\mathrm{F}=\mathrm{Fix}(g)$ consists of isolated points and surfaces. Besides, by Proposition 2.4 in [1], all fixed surfaces are 2 -spheres if and only if the representation $g_{*}$ on $H_{2}(X)$ is a permutation representation. In any case, we have the Lefschetz fixed point formula

$$
\chi(F)=\Lambda(g)=2+\operatorname{Trace}\left[g_{*}: H_{2}(X) \rightarrow H_{2}(X)\right] .
$$

We can refer to [5] for details.
Next we assume that the representation $g_{*}$ on $H_{2}(X)$ is a permutation representation and $g$ has isolated fixed points $x_{i}$ and fixed surfaces $S_{j}$ which are all 2- spheres. Suppose that $x_{i}$ has local fixed point data $\left(a_{i}, b_{i}\right), S_{j}$ has normal Euler number $n_{j}$ and normal rotation angle data $e_{j}$. Then we have the following $G$-signature formula:

$$
\sigma(g, X)=\sum_{i} \frac{\left(\zeta^{a_{i}}+1\right)}{\left(\zeta^{a_{i}}-1\right)} \frac{\left(\zeta^{b_{i}}+1\right)}{\left(\zeta^{b_{i}}-1\right)}-\sum_{j} \frac{4 n_{j} \zeta^{e_{j}}}{\left(\zeta^{e_{j}}-1\right)^{2}}
$$

(see [6]).
We introduce some useful lemmas in number theory which are used in proving the main results. We can refer to any elementary number theory book for detail, for example, [7].


[^0]:    ${ }^{*}$ Received date: Nov. 20, 2009.
    Foundation item: The Science and Technology Program (20110035) of Shanghai Maritime University.

