On Some Varieties of Soluble Lie Algebras*

Nan Ji-zhu, Wang Cheng-cheng and Li Hai-ling
(School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, 116024)
Communicated by Du Xian-kun

Abstract

In this paper, we study a class of soluble Lie algebras with variety relations that the commutator of m and n is zero. The aim of the paper is to consider the relationship between the Lie algebra L with the variety relations and the Lie algebra L which satisfies the permutation variety relations for the permutation φ of $\{3, \cdots, k\}$.

Key words: variety, permutation, nilpotent class
2000 MR subject classification: 17B30
Document code: A
Article ID: 1674-5647(2012)01-0010-07

1 Introduction

There are many parallel results between groups and Lie algebras. We can translate some results from groups to Lie algebras. For example, Macdonald ${ }^{[1]}$ discussed some varieties of groups, particularly, some varieties associated with nilpotent groups in 1961, and then Suthathip ${ }^{[2]}$ showed the similar varieties for nilpotent Lie algebras. In this paper, we extend similar varieties in [3] to soluble Lie algebras.

Let L be a Lie algebra, and $x_{1}, x_{2}, \cdots, x_{n} \in L$. The commutator $\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ in L is defined by

$$
\left[x_{1}, x_{2}\right]=\left[x_{1}, x_{2}\right]
$$

and

$$
\begin{equation*}
\left[x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}\right]=\left[\left[x_{1}, x_{2}, \cdots, x_{n-1}\right], x_{n}\right], \quad n \geq 2 \tag{1.1}
\end{equation*}
$$

Moreover, we define

$$
\left[x_{1}, x_{2}, \cdots, x_{m} ; y_{1}, y_{2}, \cdots, y_{n}\right]=\left[\left[x_{1}, x_{2}, \cdots, x_{m}\right],\left[y_{1}, y_{2}, \cdots, y_{n}\right]\right]
$$

for any integers m and n. We say that the Lie algebra L is variety $[m, n]=0$ if it satisfies

$$
\left[\left[x_{1}, x_{2}, \cdots, x_{m}\right],\left[y_{1}, y_{2}, \cdots, y_{n}\right]\right]=0, \quad x_{i}, y_{j} \in L
$$

[^0]If a Lie algebra L satisfies $\left[x_{1}, x_{2}, \cdots, x_{k}\right]=\left[x_{1}, x_{2}, x_{\varphi(3)}, \cdots, x_{\varphi(k)}\right]$, where φ is a permutation of $\{3, \cdots, k\}$, then we call that L satisfies $C(k, \varphi)$. If L satisfies $C(k, \varphi)$ for all permutations φ of $\{3, \cdots, k\}$, then we call that L satisfies $C(k)$.

The main result of this paper is that L satisfies $C(n+2)(n \geq 2)$ if and only if L satisfies the law $[n-k, 2+k]=0$ for all $k=0,1, \cdots, n-2$. Then it is easy to see that $[3,2]=0$ is equivalent to $C(5)$. Furthermore, $[n, 2]=0(n \geq 3)$ implies $C(2 n-1)$. However, the law $[m, n]=0$ does not imply any nontrivial law $C(k, \varphi)$ for $m, n \geq 3$.

2 The Lie Algebra with Varieties $[m, n]=0$

Now we want to introduce some properties of the Lie algebra with variety $[m, n]=0$. Denote by (x) a subalgebra generated by x.

Definition 2.1 Let L be a Lie algebra. We define the sequence $\left\{L^{n}\right\}_{n \geq 1}$ by

$$
L^{1}=L, \quad L^{n+1}=\left[L, L^{n}\right], \quad n \geq 1
$$

If $L^{m+1}=0, L^{m} \neq 0$ for some m, then we say that L has nilpotent class precisely m.
Lemma 2.1 ${ }^{[4]}$ Let A be an associative algebra. Then the following identities hold:
(1) $(\operatorname{ad} c)^{m}(a)=\sum_{0 \leq j \leq m}(-1)^{m-j}\binom{m}{j} c^{j} a c^{m-j}$ for all $a, c \in A$;
(2) $[a b, c]=[a, c] b+a[b, c]$ for all $a, b, c \in A$.

Lemma 2.2 ${ }^{[3]}$ If L satisfies $[n, m]=0$, then $[n+p, m+q]=0$ for any nonnegative numbers p and q.

Lemma 2.3 ${ }^{[5]}$ If L satisfies $C\left(k, \varphi_{1}\right)$ and $C\left(k, \varphi_{2}\right)$, then L satisfies $C(k, \varphi)$ for any φ in the group generated by φ_{1} and φ_{2}.

Lemma 2.4 ${ }^{[5]}$ If L satisfies $C(k)$, then L satisfies $C(m)$ for all $m \geq k$.
Lemma 2.5 Let L be a Lie algebra. Then $[a,[x, y]]=0$ if and only if $[a, x, y]=[a, y, x]$ for any $a, x, y \in L$.

Proof. It is easily checked by Jacobian identity.
Lemma 2.6 Let L be a Lie algebra with variety $[n, 2]=0(n \geq 2)$. If $L / Z(L)$ satisfies $C(n+1)$, then L satisfies $C(n+2)$.

Proof. By Lemma 2.5, we know that L satisfies $C\left(n+2, \varphi_{1}\right)$ for $\varphi_{1}=(n+1, n+2)$. Since $L / Z(L)$ satisfies $C(n+1)$, in particular, it satisfies $C\left(n+1, \varphi_{2}\right)$ for $\varphi_{2}=(3,4, \cdots, n+1)$. Thus, for any $x_{1}, x_{2}, \cdots, x_{n+1} \in L$, we have

$$
\left[x_{1}, x_{2}, x_{3}, \cdots, x_{n+1}\right]-\left[x_{1}, x_{2}, x_{\varphi_{2}(3)}, \cdots, x_{\varphi_{2}(n+1)}\right] \in Z(L)
$$

and also

$$
\left[x_{1}, x_{2}, \cdots, x_{n+1}, x_{n+2}\right]=\left[x_{1}, x_{2}, x_{\varphi_{2}(3)}, \cdots, x_{\varphi_{2}(n+1)}, x_{\varphi_{2}(n+2)}\right]
$$

for any $x_{n+2} \in L$. That is, L satisfies $C\left(n+2, \varphi_{2}\right)$. Since $S_{n}=\left\langle\varphi_{1}, \varphi_{2}\right\rangle$, by Lemma 2.3, we know that L satisfies $C(n+2)$.

[^0]: *Received date: Jan. 19, 2010.
 Foundation item: The NSF (10671028) of China.

