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Abstract: In this paper, one-dimensional (1D) nonlinear beam equations of the form

utt − uxx + uxxxx + mu = f(u)

with Dirichlet boundary conditions are considered, where the nonlinearity f is an

analytic, odd function and f(u) = O(u3). It is proved that for all m ∈ (0, M∗] ⊂ R

(M∗ is a fixed large number), but a set of small Lebesgue measure, the above equations

admit small-amplitude quasi-periodic solutions corresponding to finite dimensional

invariant tori for an associated infinite dimensional dynamical system. The proof is

based on an infinite dimensional KAM theory and a partial Birkhoff normal form

technique.
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1 Introduction and Main Result

Consider the general nonlinear beam equations of the form

utt − uxx + uxxxx + mu = f(u) (1.1)

on the finite x-interval [0, π] with Dirichlet boundary conditions

u(t, 0) = u(t, π) = uxx(t, 0) = uxx(t, π) = 0, (1.2)
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where the parameter m ∈ (0, M∗] ⊂ R, the nonlinearity f is assumed to be real analytic in

u and of the form

f(u) = au3 +
∑

n≥5

fnun, a 6= 0. (1.3)

We study the equations of the form (1.1) as a Hamiltonian system on

P = H1
0 ([0, π]) × L2([0, π])

with coordinates u and v = ut. Then the Hamiltonian is

H =
1

2
〈v, v〉 +

1

2
〈Au, u〉 +

∫ π

0

g(u)dx, (1.4)

where

A =
d4

dx4
− d2

dx2
+ m, g =

∫

0

−f(s)ds, (1.5)

and 〈 · , · 〉 denotes the usual scalar product in L2. Then (1.1) can be written in the form

ut =
∂H

∂v
= v, vt = −∂H

∂u
= −Au − f(u). (1.6)

Let

φj(x) =

√

2

π
sin jx, λj =

√

j4 + j2 + m, j = 1, 2, · · ·
be the basic modes and frequencies of the linear equation

utt − uxx + uxxxx + mu = 0

with Dirichlet boundary conditions (1.2). Then every solution of the linear equation is the

superposition of their harmonic oscillations and of the form

u(t, x) =
∑

j≥1

qj(t)φj(x), qj(t) =
√

Ij cos(λjt + θj),

with amplitudes Ij ≥ 0 and initial phases θj . The motions are periodic or quasi-periodic,

respectively, depending on whether one or finitely many eigenfunctions are excited. In

particular, for every choice

J = {j1 < j2 < · · · < jn} ⊂ N

of finitely many modes there exists an invariant 2n-dimensional linear subspace EJ which

is completely foliated into rotational tori with frequencies λj1 , · · · , λjn
:

EJ = {(u, v) = (q1φj1 + · · · + qnφjn
, p1φj1 + · · · + pnφjn

)} =
⋃

I∈P n

TJ (I),

where

Pn = {I ∈ Rn : Ij > 0, 1 ≤ j ≤ n}
is the positive quadrant in Rn and

TJ (I) = {(u, v) : q2
j + λ−2

j p2
j = Ij , 1 ≤ j ≤ n},

by using the above representations of u and v. In addition, such a torus is linearly stable,

and all solutions have zero Lyapunov exponents.

Upon restoration of the nonlinearity f , we show that there exist a Cantor set O ⊂ Pn,

a family of n-tori

TJ [O] =
⋃

I∈O
TJ (I) ⊂ EJ over O,


