Quasi-periodic Solutions of the General Nonlinear Beam Equations*

Gao Yi-XIAn ${ }^{1,2}$
(1. College of Mathematics and Statistics, Northeast Normal University, Changchun, 130024)
(2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012)
\section*{Communicated by Li Yong}

Abstract

In this paper, one-dimensional (1D) nonlinear beam equations of the form $$
u_{t t}-u_{x x}+u_{x x x x}+m u=f(u)
$$ with Dirichlet boundary conditions are considered, where the nonlinearity f is an analytic, odd function and $f(u)=O\left(u^{3}\right)$. It is proved that for all $m \in\left(0, M^{*}\right] \subset \mathbf{R}$ (M^{*} is a fixed large number), but a set of small Lebesgue measure, the above equations admit small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system. The proof is based on an infinite dimensional KAM theory and a partial Birkhoff normal form technique.

Key words: beam equation, KAM theorem, quasi-periodic solution, partial Birkhoff normal form
2000 MR subject classification: 37K55
Document code: A
Article ID: 1674-5647(2012)01-0051-14

1 Introduction and Main Result

Consider the general nonlinear beam equations of the form

$$
\begin{equation*}
u_{t t}-u_{x x}+u_{x x x x}+m u=f(u) \tag{1.1}
\end{equation*}
$$

on the finite x-interval $[0, \pi]$ with Dirichlet boundary conditions

$$
\begin{equation*}
u(t, 0)=u(t, \pi)=u_{x x}(t, 0)=u_{x x}(t, \pi)=0 \tag{1.2}
\end{equation*}
$$

[^0]where the parameter $m \in\left(0, M^{*}\right] \subset \mathbf{R}$, the nonlinearity f is assumed to be real analytic in u and of the form
\[

$$
\begin{equation*}
f(u)=a u^{3}+\sum_{n \geq 5} f_{n} u^{n}, \quad a \neq 0 \tag{1.3}
\end{equation*}
$$

\]

We study the equations of the form (1.1) as a Hamiltonian system on

$$
\mathcal{P}=H_{0}^{1}([0, \pi]) \times L^{2}([0, \pi])
$$

with coordinates u and $v=u_{t}$. Then the Hamiltonian is

$$
\begin{equation*}
H=\frac{1}{2}\langle v, v\rangle+\frac{1}{2}\langle A u, u\rangle+\int_{0}^{\pi} g(u) \mathrm{d} x \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{\mathrm{d}^{4}}{\mathrm{~d} x^{4}}-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+m, \quad g=\int_{0}-f(s) \mathrm{d} s \tag{1.5}
\end{equation*}
$$

and $\langle\cdot, \cdot\rangle$ denotes the usual scalar product in L^{2}. Then (1.1) can be written in the form

$$
\begin{equation*}
u_{t}=\frac{\partial H}{\partial v}=v, \quad v_{t}=-\frac{\partial H}{\partial u}=-A u-f(u) \tag{1.6}
\end{equation*}
$$

Let

$$
\phi_{j}(x)=\sqrt{\frac{2}{\pi}} \sin j x, \quad \lambda_{j}=\sqrt{j^{4}+j^{2}+m}, \quad j=1,2, \cdots
$$

be the basic modes and frequencies of the linear equation

$$
u_{t t}-u_{x x}+u_{x x x x}+m u=0
$$

with Dirichlet boundary conditions (1.2). Then every solution of the linear equation is the superposition of their harmonic oscillations and of the form

$$
u(t, x)=\sum_{j \geq 1} q_{j}(t) \phi_{j}(x), \quad q_{j}(t)=\sqrt{I_{j}} \cos \left(\lambda_{j} t+\theta_{j}\right)
$$

with amplitudes $I_{j} \geq 0$ and initial phases θ_{j}. The motions are periodic or quasi-periodic, respectively, depending on whether one or finitely many eigenfunctions are excited. In particular, for every choice

$$
J=\left\{j_{1}<j_{2}<\cdots<j_{n}\right\} \subset \mathbf{N}
$$

of finitely many modes there exists an invariant $2 n$-dimensional linear subspace E_{J} which is completely foliated into rotational tori with frequencies $\lambda_{j_{1}}, \cdots, \lambda_{j_{n}}$:

$$
E_{J}=\left\{(u, v)=\left(q_{1} \phi_{j_{1}}+\cdots+q_{n} \phi_{j_{n}}, p_{1} \phi_{j_{1}}+\cdots+p_{n} \phi_{j_{n}}\right)\right\}=\bigcup_{I \in \overline{P^{n}}} \mathcal{T}_{J}(I)
$$

where

$$
P^{n}=\left\{I \in \mathbf{R}^{n}: I_{j}>0,1 \leq j \leq n\right\}
$$

is the positive quadrant in \mathbf{R}^{n} and

$$
\mathcal{T}_{J}(I)=\left\{(u, v): q_{j}^{2}+\lambda_{j}^{-2} p_{j}^{2}=I_{j}, 1 \leq j \leq n\right\}
$$

by using the above representations of u and v. In addition, such a torus is linearly stable, and all solutions have zero Lyapunov exponents.

Upon restoration of the nonlinearity f, we show that there exist a Cantor set $\mathcal{O} \subset P^{n}$, a family of n-tori

$$
\mathcal{T}_{J}[\mathcal{O}]=\bigcup_{I \in \mathcal{O}} \mathcal{T}_{J}(I) \subset E_{J} \quad \text { over } \mathcal{O}
$$

[^0]: *Received date: Dec. 2, 2009.
 Foundation item: The NSF (11001042) of China, the SRFDP Grant (20100043120001) and FRFCU Grant (09QNJJ002).

