Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators*

Qi Qiu-lan ${ }^{1}$ and Liu Juan ${ }^{2}$
(1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, 050016)
(2. No. 1 Middle Shcool of Handan, Handan, Hebei, 056002)
Communicated by Ma Fu-ming

Abstract

In this paper we give a strong converse inequality of type B in terms of unified K-functional $K_{\lambda}^{\alpha}\left(f, t^{2}\right)(0 \leq \lambda \leq 1,0<\alpha<2)$ for the Meyer-König and Zeller-Durrmeyer type operators.

Key words: Meyer-König and Zeller-Durrmeyer type operator, moduli of smoothness, K-functional, strong converse inequality, Hölder's inequality
2000 MR subject classification: 41A25, 41A36, 41A27
Document code: A
Article ID: 1674-5647(2012)01-0001-09

1 Introduction

The Meyer-König and Zeller operators were given by

$$
\begin{aligned}
& M_{n}(f, x)=\sum_{k=0}^{\infty} f\left(\frac{k}{n+k}\right) m_{n, k}(x), \quad 0 \leq x<1, \\
& M_{n}(f, 1)=f(1), \\
& m_{n, k}(x)=\binom{n+k}{k} x^{k}(1-x)^{n+1},
\end{aligned}
$$

which were the object of several investigations in approximation theory (see [1-3]). In recent years there are many results of strong converse inequalities for various operators (see [47]). Since the expression of the moment of the Meyer-König and Zeller type operators is very complicated (see $[8-10]$), we have not seen any result of strong converse inequality for Meyer-König and Zeller-Durrmeyer type operators. In this paper, we study the modification of Meyer-König and Zeller-Durrmeyer type operators $\tilde{M}_{n}(f, x)$:

$$
\tilde{M}_{n}(f, x)=\sum_{k=0}^{\infty} \Phi_{n, k}(f) m_{n, k}(x), \quad f \in C[0,1]
$$

[^0]where
\[

$$
\begin{aligned}
& \Phi_{n, k}(f)=C_{n-2, k-1}^{-1} \int_{0}^{1} f(t) m_{n-2, k-1}(t) \mathrm{d} t \\
& m_{n, k}(x)=\binom{n+k}{k} x^{k}(1-x)^{n+1} \\
& m_{n,-1}(x):=0 \\
& C_{n, k}=\int_{0}^{1} m_{n, k}(t) \mathrm{d} t=\frac{n+1}{(n+k+1)(n+k+2)}
\end{aligned}
$$
\]

and give a strong converse inequality of type B.
We recall that for $0 \leq \lambda \leq 1$, and $\varphi(x)=\sqrt{x}(1-x)$,

$$
\omega_{\varphi^{\lambda}}^{2}(f, t)=\sup _{0<h \leq t}\left\|\Delta_{h \varphi^{\lambda}}^{2}\right\|,
$$

where

$$
\|f\|:=\sup _{x \in[0,1)}|f(x)|
$$

$$
\Delta_{h \varphi^{\lambda}}^{2} f(x)= \begin{cases}f\left(x+h \varphi^{\lambda}(x)\right)-2 f(x)+f\left(x-h \varphi^{\lambda}(x)\right), & \text { if } x \pm h \varphi^{\lambda}(x) \in[0,1) \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
K_{\varphi^{\lambda}}^{2}\left(f, t^{2}\right)=\inf _{g \in D}\left\{\|f-g\|+t^{2}\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|\right\}
$$

where

$$
D=\left\{g \mid g^{\prime} \in A \cdot C \cdot \mathrm{loc},\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|<\infty\right\}
$$

In this paper we use the relation $\omega_{\varphi^{\lambda}}^{2}(f, t) \sim K_{\varphi^{\lambda}}^{2}\left(f, t^{2}\right)$ (see [11]), which means that, there exists a positive constant C such that

$$
C^{-1} K_{\varphi^{\lambda}}^{2}\left(f, t^{2}\right) \leq \omega_{\varphi^{\lambda}}^{2}(f, t) \leq C K_{\varphi^{\lambda}}^{2}\left(f, t^{2}\right) .
$$

Before state our results, we give some new notations.
For $0 \leq \lambda \leq 1,0<\alpha<2$, and $\varphi(x)=\sqrt{x}(1-x)$,

$$
\begin{array}{ll}
C_{0}=\{f \in C[0,1], f(0)=f(1)=0\}, & \|f\|_{0}=\sup _{x \in(0,1)}\left|\varphi^{\alpha(\lambda-1)}(x) f(x)\right|, \\
C_{\lambda, \alpha}^{0}=\left\{f \in C_{0},\|f\|_{0}<\infty\right\}, & \|f\|_{2}=\sup _{x \in(0,1)}\left|\varphi^{2+\alpha(\lambda-1)}(x) f^{\prime \prime}(x)\right|, \\
C_{\lambda, \alpha}^{2}=\left\{f \in C_{0},\|f\|_{2}<\infty, f^{\prime} \in A \cdot C \cdot \mathrm{loc}\right\}, & \\
K_{\lambda}^{\alpha}\left(f, t^{2}\right)=\inf _{g \in C_{\lambda, \alpha}^{2}}\left\{\|f-g\|_{0}+t^{2}\|g\|_{2}\right\}, \quad f \in C_{0} .
\end{array}
$$

The main results of this paper can be stated as follows.
Theorem 1.1 Suppose $0 \leq \lambda \leq 1,0<\alpha<2$, and $f \in C_{\lambda, \alpha}^{0}$. Then there exists a constant $K>1$ such that for $l \geq K n$ we have

$$
K_{\lambda}^{\alpha}\left(f, \frac{1}{n}\right) \leq C \frac{l}{n}\left(\left\|\tilde{M}_{n} f-f\right\|_{0}+\left\|\tilde{M}_{l} f-f\right\|_{0}\right)
$$

Throughout this paper, C denotes a positive constant independent of n and x, which are not necessarily the same at each occurrence.

[^0]: *Received date: May 28, 2007.
 Foundation item: The NSF (10571040) of China and NSF (L2010Z02) of Hebei Normal University.

