Bombieri's Theorem in Short Intervals*

Lao Hui-xue
(School of Mathematical Sciences, Shandong Normal University, Jinan, 250014)
Communicated by Du Xian-kun

Abstract

Under the assumption of sixth power large sieve mean-value of Dirichlet L-function, we improve Bombieri's theorem in short intervals by virtue of the large sieve method and Heath-Brown's identity.

Key words: prime number, Bombieri's theorem in short interval, Dirichlet polynomial
2000 MR subject classification: 11N13, 11N36
Document code: A
Article ID: 1674-5647(2012)02-0???-08

1 Introduction

Let $\Lambda(n)$ be the von Mangoldt function and

$$
\psi(x, q ; a)=\sum_{\substack{n \leq x \\ n \equiv a(\bmod q)}} \Lambda(n) .
$$

The well-known theorem of Bombieri-Vinogradov theorem (see [1]) states that

$$
\begin{equation*}
\sum_{q \leq Q} \max _{(a, q)=1} \max _{z \leq x}\left|\psi(z, q ; a)-\frac{z}{\varphi(q)}\right| \ll \frac{x}{(\ln x)^{A}} \tag{1.1}
\end{equation*}
$$

where A is an arbitrary positive constant, and

$$
Q=\frac{x^{\frac{1}{2}}}{(\ln x)^{B}}
$$

with

$$
B=B(A)>0 .
$$

The problem of finding a result analogous to (1.1) for short intervals was first investigated by Jutila ${ }^{[2]}$. By using the zero-density method he established

$$
\begin{equation*}
\sum_{q \leq Q} \max _{(a, q)=1} \max _{h \leq y} \max _{\frac{1}{2} x<z \leq x}\left|\psi(z+h, q ; a)-\psi(z, q ; a)-\frac{h}{\varphi(q)}\right| \ll \frac{y}{(\ln x)^{A}} \tag{1.2}
\end{equation*}
$$

where

$$
y=x^{\theta}
$$

[^0]and
$$
Q=\frac{x^{\psi}}{(\ln x)^{B(A)}}
$$
with
\[

$$
\begin{gathered}
\psi<\frac{4 c \theta+2 \theta-1-4 c}{6+4 c}, \\
c=\inf \left\{\xi: \zeta\left(\frac{1}{2}+\mathrm{i} t\right) \ll t^{\xi}\right\} .
\end{gathered}
$$
\]

Subsequently, a number of authors improved Jutila's result, showing that (1.2) holds for smaller y and/or larger values of Q (see, e.g., [3-8]). The best known results hitherto are

$$
\begin{equation*}
\psi \leq \theta-\frac{1}{2}, \quad \frac{3}{5}<\theta \leq 1 \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi \leq \theta-\frac{11}{20}, \quad \frac{7}{12}<\theta \leq 1 \tag{1.4}
\end{equation*}
$$

The former result is established independently by Perelli et al. ${ }^{[5]}$ and Timofeev ${ }^{[8]}$, while the latter result is due to Timofeev ${ }^{[8]}$.

The Zero-Density Hypothesis would imply that (1.2) is true if

$$
\psi \leq \theta-\frac{1}{2}, \quad \frac{1}{2}<\theta \leq 1
$$

In this paper, under the assumption of sixth power large sieve mean-value of Dirichlet L-function, we are able to prove the following result.

Theorem 1.1 The estimate (1.2) is true if

$$
\psi \leq \theta-\frac{1}{2}, \quad \frac{7}{12}<\theta \leq 1
$$

We introduce some notations in the following.
As usual, $\varphi(n)$ stands for the function of Euler. $\chi \bmod q$ is a Dirichlet character modulo q, and $L(s, \chi)$ is the Dirichlet L-function attached to χ. The summation $\sum_{\chi \bmod q}{ }^{*}$ means that the summation is over primitive characters modulo $q . L=\ln x$ and $q \sim Q$ means that $\frac{Q}{2}<q<Q$.

$$
d_{k}(m)=\sum_{m=m_{1} m_{2} \cdots m_{k}} 1, \quad k=1,2, \cdots
$$

2 Proof of Theorem 1.1

Let

$$
X^{\frac{3}{7}}<Y \leq X
$$

and $M_{1}, M_{2}, \cdots, M_{14}$ be positive real numbers such that

$$
\begin{equation*}
Y \leq M_{1} \cdots M_{14}<X \quad \text { and } \quad 2 M_{8}, \cdots, 2 M_{14} \leq X^{1 / 7} \tag{2.1}
\end{equation*}
$$

[^0]: *Received date: Aug. 24, 2010.
 Foundation item: Tianyuan Mathematics Foundation (11026075), the NSF (10971119) of China, and the NSF (ZR2009AQ007) of Shandong Province.

