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Abstract: In the presence of external forces depending only on the time and space

variables, the Boltzmann-Enskog equation formally conserves only the mass of the

system, and its entropy functional is also nonincreasing. Corresponding to this type

of equation, we first give some hypotheses of its bicharacteristic equations and then

get some results about the stablity of its global solution with the help of two new

Lyapunov functionals: one is to describe interactions between particles with different

velocities and the other is to measure the L
1 distance between two mild solutions.

The former Lyapunov functional yields the time-asymptotic convergence of global

classical solutions to the collision free motion while the latter is applied into the veri-

fication of the L
1 stability of global mild solutions to the Boltzmann-Enskog equation

for a moderately or highly dense gas in the influence of external forces.
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1 Introduction

We are interested in the time-asymptotic behaviour and the Lyapunov stability of the global

classical solution to the Enskog equation for a moderately or highly dense gas in the influence

of external forces. As the generalization of the Boltzmann equation, the Enskog equation is a

model first proposed by Enskog[1] in 1922 for a description of the dynamical behavior of the

density of a moderately or highly dense gas. This is because the Boltzmann equation is no

longer suitable for gases with high-density effects although it models dilute gases successfully.
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The Enskog equation is a partial differential integral equation of the hyperbolic type. There

are some different versions of the Enskog equation in order that they formally satisfy some

properties, such as entropy bound and consistence with irreversible thermodynamics (see

[2–3]). We now take into account the so-called Boltzmann-Enskog equation, in the presence

of external forces E(t, x) depending on the time and space variables t ∈ R+ and x ∈ R
3, as

follows:
∂f

∂t
+ v · ∂f

∂x
+ E(t, x) · ∂f

∂v
= Q(f) (1.1)

for a one-particle distribution function f = f(t, x, v) that depends on time t ∈ R+, the

position x ∈ R
3 and the velocity v ∈ R

3, where Q is the collision operator whose form will

be addressed below. Here and throughout this paper, R+ represents the positive side of the

real axis including its origin and R
3 denotes the three-dimensional Euclidean space.

The collision operator Q is expressed by the difference between the gain and loss terms

respectively, and defined by

Q+(f)(t, x, v) = a2

∫

R3×S2
+

f(t, x, v′)f(t, x− aω,w′)B(v − w, ω)dωdw, (1.2)

Q−(f)(t, x, v) = a2

∫

R3×S2
+

f(t, x, v)f(t, x+ aω,w)B(v − w, ω)dωdw. (1.3)

In (1.2)-(1.3), S2
+ = {ω ∈ S2 : ω ·(v−w) ≥ 0} is a subset of a unit sphere surface S2 in R

3, a

is a diameter of hard sphere, ω is a unit vector along the line passing through the centers of

the spheres at their interaction, (v′, w′) are velocities after collision of two particles having

precollisional velocities (v, w), and

B(v − w, ω) = max{0, (v − w) · ω}
is the collision kernel.

The Boltzmann-Enskog equation (1.1) is a modification of Enskog’s original work men-

tioned above and obeys only the conservation laws of mass in the presence of external

forces. It is worth mentioning that the equation (1.1) still obeys the conservation laws of

mass, momentum and energy under the assumption that E(t, x) = 0, that is, in the absence

of external forces (see [4]).

As for the Boltzmann equation, two colliding particles obey the conservation laws of

both kinetic momentum and energy as follows:

v + w = v′ + w′, v2 + w2 = v′
2

+ w′2. (1.4)

This results in their velocity relations

v′ = v − [(v − w) · ω]ω, w′ = w + [(v − w) · ω]ω, (1.5)

where ω ∈ S2
+. By (1.5), it follows that

B(v′ − w′,−ω) = B(v − w, ω).

The two postcollisional velocities given by (1.5) also have another expression as follows (see

[5–6]):

v′ = v − u‖, w′ = v − u⊥. (1.6)

where u = v − w, u‖ = (u · ω)ω and u⊥ = u − u‖. Then the gain and loss terms (1.2) and


