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Abstract: The commuting graph of an arbitrary ring R, denoted by Γ (R), is a graph

whose vertices are all non-central elements of R, and two distinct vertices a and b

are adjacent if and only if ab = ba. In this paper, we investigate the connectivity

and the diameter of Γ (ZnS3). We show that Γ (ZnS3) is connected if and only if

n is not a prime number. If Γ (ZnS3) is connected then diam(Γ (ZnS3)) = 3, while

if Γ (ZnS3) is disconnected then every connected component of Γ (ZnS3) must be a

complete graph with same size, and we completely determine the vertice set of every

connected component.
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1 Introduction

Let G be a group and R a ring. We denote by RG the set of all formal linear combinations

of the form

α =
∑
g∈G

agg,

where ag ∈ R and ag = 0 almost everywhere, that is, only a finite number of coefficients are

different from 0 in each of these sums. Notice that it follows from our definition that given

two elements

α =
∑
g∈G

agg ∈ RG, β =
∑
g∈G

bgg ∈ RG,

we have that

α = β
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if and only if

ag = bg, g ∈ G.

We define the sum of two elements in RG componentwise:(∑
g∈G

agg
)
+

(∑
g∈G

bgg
)
=

∑
g∈G

(ag + bg)g.

Also, given two elements

α =
∑
g∈G

agg ∈ RG, β =
∑
h∈G

bhh ∈ RG,

we define their product by

αβ =
∑

g, h∈G

agbhgh.

The commuting graph of an arbitrary ring R denoted by Γ (R) is a graph with vertex

set V (R) = R \ Z(R), where Z(R) is the center of R, and two distinct vertices a and b are

adjacent if and only if ab = ba. The notion of commuting graph of a ring was first introduced

by Akbari et al.[1] in 2004. They investigated some properties of Γ (R), whenever R is a

finite semisimple ring. For any finite field F , they obtained connectivity, minimum degree,

maximum degree and clique number of Γ (Mn(F )). Also it was shown that for any two finite

semisimple rings R and S, if Γ (R) ∼= Γ (S ), then there are commutative semisimple rings

R1 and S1 and semisimple ring T such that

R ∼= T ×R1, S ∼= T × S1, |R1| = |S1|.
The commuting graphs of some special rings have also been studied (see [2–4]).

Group rings are very interesting algebraic structure. For a group ring ZnS3, the proper-

ties of commuting graph can reflect its some structures. In this paper, we investigate some

properties of Γ (ZnS3), where

ZnS3 = {x1 + x2a+ x3a
2 + x4b+ x5ab+ x6a

2b | xi ∈ Zn, i = 1, 2, · · · , 6},
S3 = ⟨a, b | a3 = b2 = 1, bab = a−1⟩ = {1, a, a2, b, ab, a2b}

is the symmetric group of order 6, and

Zn = {0, 1, · · · , n− 1}
is the module n residue class ring. Given a group ring RG and a finite subset X of the group

G, we denote by X̂ the following element of RG:

X̂ =
∑
x∈X

x.

In addition, the distinct conjugacy classes of S3 are

C1 = {1}, C2 = {a, a2}, C3 = {b, ab, a2b}.
By Theorem 3.6.2 in [5], {Ĉ1, Ĉ2, Ĉ3} form a basis of the center Z(ZnS3), where Ĉi denotes

the class sum.

In this paper, all graphs are simple and undirected and |G| denotes the number of vertices

of the graph G. We write x ∈ V (G) when x is a vertex of G. A path of length r from a

vertex x to another vertex y in G is a sequence of r + 1 distinct vertices starting with x

and ending with y such that consecutive vertices are adjacent. For a connected graph H,


