\mathcal{F} -perfect Rings and Modules^{*}

Lu Bo

(College of Mathematics and Information Science, Northwest Normal University, Lanzhou, 730070)

Communicated by Du Xian-kun

Abstract: Let R be a ring, and let $(\mathcal{F}, \mathcal{C})$ be a cotorsion theory. In this article, the notion of \mathcal{F} -perfect rings is introduced as a nontrial generalization of perfect rings and A-perfect rings. A ring R is said to be right \mathcal{F} -perfect if F is projective relative to R for any $F \in \mathcal{F}$. We give some characterizations of \mathcal{F} -perfect rings. For example, we show that a ring R is right \mathcal{F} -perfect if and only if \mathcal{F} -covers of finitely generated modules are projective. Moreover, we define \mathcal{F} -perfect modules and investigate some properties of them.

Key words: \mathcal{F} -perfect ring, \mathcal{F} -cover, \mathcal{F} -perfect module, cotorsion theory, projective module

2000 MR subject classification: 16D50, 16D40, 16L30 **Document code:** A

Article ID: 1674-5647(2013)01-0041-10

1 Introduction

In 1953, Eckmann and Schopf^[1] proved the existence of injective envelopes of modules over any associative ring. The dual problem, that is, the existence of projective covers was studied by Bass^[2] in 1960. In spite of the existence of injective envelopes over any ring, he proved that over a ring R, all right modules have projective covers if and only if R is a right perfect ring. In [3], a ring R is called right almost-perfect if every flat right R-module is projective relative to R, and proved that a ring is right almost-perfect if and only if flat covers of finitely generated modules are projective. In this article, we introduce the concept of \mathcal{F} -perfect rings. We give some characterizations of \mathcal{F} -perfect rings. For example, we show that a ring R is right \mathcal{F} -perfect if and only if \mathcal{F} -covers of finitely generated modules are projective.

^{*}Received date: Aug. 23, 2010.

$${}^{\perp}\mathcal{X} = \ker \operatorname{Ext}^{1}(\cdot, X) = \{M \mid \operatorname{Ext}^{1}(M, X) = 0, \ \forall X \in \mathcal{X}\},\$$
$$\mathcal{X}^{\perp} = \ker \operatorname{Ext}^{1}(X, \cdot) = \{N \mid \operatorname{Ext}^{1}(X, N) = 0, \ \forall X \in \mathcal{X}\}.$$

A pair $(\mathcal{F}, \mathcal{C})$ of classes of *R*-modules is called a cotorsion theory if $\mathcal{F}^{\perp} = \mathcal{C}$ and $\mathcal{F} = {}^{\perp}\mathcal{C}$ (see [4]). A cotorsion theory $(\mathcal{F}, \mathcal{C})$ is called complete if every *R*-module has a special \mathcal{C} -preenvelope (and a special \mathcal{F} -precover) (see [5]). A cotorsion theory $(\mathcal{F}, \mathcal{C})$ is called perfect if every *R*-module has a \mathcal{C} -envelope and an \mathcal{F} -cover (see [6, 7]). A cotorsion theory $(\mathcal{F}, \mathcal{C})$ is said to be hereditary if whenever $0 \to L' \to L \to L'' \to 0$ is exact with $L, L'' \in \mathcal{F}$ then L'is also in \mathcal{F} , or equivalently, if $0 \to C' \to C \to C'' \to 0$ is exact with $C', C \in \mathcal{C}$ then C'' is also in \mathcal{C} (see [8]).

Let R be a ring and \mathscr{C} be a class of R-modules which is closed under isomorphic copies. A \mathscr{C} -precover of an R-module M is a homomorphism $\varphi: F \to M$ with $F \in \mathscr{C}$ such that for any homomorphism $\psi: G \to M$ with $G \in \mathscr{C}$, there exists $\mu: G \to F$ such that $\varphi \mu = \psi$. A \mathscr{C} -precover $\varphi: F \to M$ is said to be a \mathscr{C} -cover if every endomorphism λ of F with $\varphi \lambda = \varphi$ is an automorphism of F. Dually, a \mathscr{C} -preenvelope and a \mathscr{C} -envelope of an R-module are defined.

In [4] a ring R is called right almost-perfect if every flat right R-module is projective relative to R; equivalently, flat covers of finitely generated right R-modules are projective. It was shown that right perfect rings are right almost-perfect, and right almost-perfect rings are semiperfect, but not conversely. In Section 2, we introduce the notion of \mathcal{F} -perfect rings as a generalization of the notion of almost-perfect rings, that is, we call a ring R \mathcal{F} -perfect in case F is projective relative to R for any $F \in \mathcal{F}$. We give some characterizations of \mathcal{F} -perfect rings. For example, in Theorem 2.1 we show that a ring R is right \mathcal{F} -perfect if and only if \mathcal{F} -covers of finitely generated modules are projective. And in Theorem 2.3 we prove that a ring R is right \mathcal{F} -perfect if and only if for every right R-modules F with $F \in \mathcal{F}$, if

$$F = P + U_{\rm c}$$

where P is a finitely generated projective summand of F and $U \leq F$, then

$$F = P \oplus V$$
 for some $V \le U$.

In Section 3, we introduce the notion of \mathscr{F} -perfect modules, that is, let $(\mathcal{F}, \mathcal{C})$ be a perfect cotorsion theory. We call an *R*-module M \mathscr{F} -perfect in case the \mathscr{F} -cover of every factor module of M is projective. We show that \mathscr{F} -perfectness is closed under factor modules, extensions, and finite direct sums. Also some characterizations of \mathscr{F} -perfect modules are given.

Throughout this article, all rings are associative with identity, and all modules are unitary right modules unless stated otherwise. For a ring R, let J = J(R) be the Jacobson radical of R. (\mathcal{F} , \mathcal{C}) denotes a cotorsion theory. \mathcal{F} (resp., \mathcal{C}) denotes the \mathcal{F} (resp., \mathcal{C}) of the cotorsion theory (\mathcal{F} , \mathcal{C}) unless stated otherwise.

General background materials can be found in [4, 9–10].