A Note on Donaldson's "Tamed to Compatible" Question

TAN QIANG AND XU HAI-FENG

 $(School \ of \ Mathematics, \ Yangzhou \ University, \ Yangzhou, \ Jiangsu, \ 225002)$

Communicated by Lei Feng-chun

Abstract: Recently, Tedi Draghici and Weiyi Zhang studied Donaldson's "tamed to compatible" question (Draghici T, Zhang W. A note on exact forms on almost complex manifolds. arXiv: 1111. 7287v1 [math. SG]. Submitted on 30 Nov. 2011). That is, for a compact almost complex 4-manifold whose almost complex structure is tamed by a symplectic form, is there a symplectic form compatible with this almost complex structure? They got several equivalent forms of this problem by studying the space of exact forms on such a manifold. With these equivalent forms, they proved a result which can be thought as a further partial answer to Donaldson's question in dimension 4. In this note, we give another simpler proof of their result.

Key words: compact almost complex 4-manifold, ω -tame almost complex structure, ω -compatible almost complex structure

2010 MR subject classification: 53D35, 53D45, 58D29 Document code: A Article ID: 1674-5647(2014)02-0179-04 DOI: 10.13447/j.1674-5647.2014.02.08

1 Introduction

Donaldson^[1] asked the following question:

Question 1.1 For a compact almost complex 4-manifold (M^4, J) , if J is tamed by a symplectic form, is there a symplectic form compatible with J?

An almost complex structure J on a manifold M^{2n} is tamed by a symplectic form ω , if ω is J-positive, i.e.,

 $\omega(X,\,JX)>0,\qquad X\in TM,\;X\neq 0.$

Received date: Nov. 19, 2012.

Foundation item: The NSF (11071208 and 11126046) of China and the Postgraduate Innovation Project (CXZZ13_088) of Jiangsu Province.

E-mail address: tanqiang1986@hotmail.com.

An almost complex structure J is said to be compatible with ω , if ω is J-positive and J-invariant, i.e.,

 $\omega(JX, JY) = \omega(X, Y), \qquad X, Y \in TM.$

Taubes^[2] showed that this question has a positive answer on all compact almost complex 4-manifolds (M^4, J) with $b^+ = 1$ for generic almost complex structures. This problem is related to an almost-Kähler analogue of Yau's theorem (see [3]).

Draghici and Zhang^[4] obtained the following result, which can be thought as a further partial answer to the Donaldson's question in dimension 4.

Theorem 1.1^[4] Let (M^4, J) be a compact almost complex manifold. The following statements are equivalent:

(i) J admits a compatible symplectic form;

(ii) For any J-anti-invariant form α , there exists a J-tamed symplectic form whose Janti-invariant part is α .

Draghici and Zhang^[4] proposed several equivalent statements of Donaldson's question. If we use some notations as introduced in [4] (also see the next section for explanation), then Question 1.1 can be rewritten as

Question 1.2 If $S_J^t \neq \emptyset$, is $S_J^c \neq \emptyset$ as well?

We denote by $S_J^c \neq \emptyset$ and $S_J^t \neq \emptyset$ the set of symplectic forms, which are *J*-compatible and *J*-tamed, respectively.

Question 1.1 has the following two equivalent forms:

Question 1.3 Is it true that either $d\Omega^{J,-} \cap d\Omega^{J,\oplus} = \emptyset$ or $d\Omega^{J,\oplus} = d\Omega^{J,+}$?

Question 1.4 If $\alpha \in \Omega^{J,-}$ satisfies $d\alpha \in d\Omega^{J,\oplus}$, is it true that $d(-\alpha) \in d\Omega^{J,\oplus}$ as well?

For a detailed proof of equivalent statements, we refer to [4].

Let (M^4, J) be a compact almost complex manifold. $\wedge^2(M)$ is the vector bundle of (real) 2-forms on M. $\Omega^2(M)$ denotes the space of real C^{∞} 2-forms, i.e., the C^{∞} sections of the bundle $\wedge^2(M)$.

J acts on $\Omega^2(M)$ as an involution via

$$J: \ \mathcal{Q}^2(M) \longrightarrow \mathcal{Q}^2(M),$$
$$\alpha \longmapsto \alpha^J,$$

where $\alpha^{J}(\cdot, \cdot) = \alpha(J \cdot, J \cdot)$. Thus, we can define *J*-invariant forms and *J*-anti-invariant forms by

$$\Omega^{J,+}(M) := \{ \alpha \in \Omega^2(M) \mid \alpha^J = \alpha \},$$

$$\Omega^{J,-}(M) := \{ \alpha \in \Omega^2(M) \mid \alpha^J = -\alpha \}$$

It is easy to see that $\Omega^{J,+}(M)$ and $\Omega^{J,-}(M)$ are vector spaces and we have

 $\Omega^2(M) = \Omega^{J,+}(M) \oplus \Omega^{J,-}(M).$