A Weak Convergence Theorem for A Finite Family of Asymptotically Nonexpansive Mappings

KAN XU-ZHOU AND GUO WEI-PING

(School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009)

Communicated by Ji You-qing

Abstract: The purpose of this paper is to prove a new weak convergence theorem for a finite family of asymptotically nonexpansive mappings in uniformly convex Banach space.

Key words: asymptotically nonexpansive mapping, weak convergence, common fixed point, uniformly convex Banach space

2010 MR subject classification: 47H09, 47H10

Document code: A

Article ID: 1674-5647(2014)04-0295-06 DOI: 10.13447/j.1674-5647.2014.04.02

1 Introduction and Preliminaries

Throughout this paper, we assume that E is a real Banach space, E^* is the dual space of E and $J: E \to 2^{E^*}$ is the normalized duality mapping defined by

 $J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\| \|f\|, \|f\| = \|x\| \}, \qquad x \in E,$

where $\langle \cdot, \cdot \rangle$ denotes duality pairing between E and E^* . A single-valued normalized duality mapping is denoted by j.

Let K be a nonempty subset of E and $T : K \to K$ be a mapping. T is said to be asymptotically nonexpansive (see [1]) if there exists a sequence $\{h_n\} \subset [1, \infty)$ with $\lim_{n \to \infty} h_n = 1$ such that

$$||T^n x - T^n y|| \le h_n ||x - y||, \quad x, y \in K, \ n \ge 1.$$

Proposition 1.1^[2] Let K be a nonempty subset of E, and $\{T_i\}_{i=1}^N : K \to K$ be N asymptotically nonexpansive mappings. Then there exists a sequence $\{h_n\} \subset [1, \infty)$ with $h_n \to 1$

Received date: March 31, 2012.

Foundation item: The NSF (11271282) of China.

E-mail address: kanxuzhou925@126.com (Kan X Z).

such that

$$||T_i^n x - T_i^n y|| \le h_n ||x - y||, \qquad n \ge 1, \ x, y \in K, \ i = 1, 2, \cdots, N.$$
(1.1)

Let K be a nonempty closed convex subset of E, $x_0 \in K$ be any given point and $\{T_i\}_{i=1}^N : K \to K$ be N asymptotically nonexpansive mappings. Let $\{h_n\}$ be the sequence defined by (1.1) and $L = \sup h_n$. Then the sequence $\{x_n\} \subset K$ defined by

$$\begin{cases} x_{1}^{-} = \alpha_{1}x_{0} + (1 - \alpha_{1})T_{1}x_{1}, \\ x_{2} = \alpha_{2}x_{1} + (1 - \alpha_{2})T_{2}x_{2}, \\ \vdots \\ x_{N} = \alpha_{N}x_{N-1} + (1 - \alpha_{N})T_{N}x_{N}, \\ x_{N+1} = \alpha_{N+1}x_{N} + (1 - \alpha_{N+1})T_{1}^{2}x_{N+1}, \\ \vdots \\ x_{2N} = \alpha_{2N}x_{2N-1} + (1 - \alpha_{2N})T_{N}^{2}x_{2N}, \\ x_{2N+1} = \alpha_{2N+1}x_{2N} + (1 - \alpha_{2N+1})T_{1}^{3}x_{2N+1}, \\ \vdots \end{cases}$$
(1.2)

is called the implicit iterative sequence for a finite family of asymptotically nonexpansive mappings $\{T_1, T_2, \dots, T_N\}$, where $\tau \leq \alpha_n \leq 1 - \tau < \frac{1}{L}$ for all $n \geq 1$ and some $\tau > 0$.

Note that each $n \ge 1$ can be written as n = (k-1)N + i, where $i = i(n) \in \{1, 2, \dots, N\}$, and $k = k(n) \ge 1$ is a positive integer with $k(n) \to \infty$ as $n \to \infty$. Hence we can write (1.2) in the following compact form:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_{i(n)}^{k(n)} x_n, \qquad n \ge 1.$$
(1.3)

In 2006, Chang *et al.*^[2] studied the iteration process (1.3) and proved the following weak convergence theorem.

Theorem 1.1 Let E be a real uniformly convex Banach space satisfying Opial condition, K be a nonempty closed convex subset of E, $\{T_1, T_2, \dots, T_N\} : K \to K$ be N asymptotically nonexpansive mappings with $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$, $\{\alpha_n\}$ be a sequence in [0, 1] and $\{h_n\}$ be the sequence defined by (1.1) with $L = \sup_{n \ge 1} h_n \ge 1$ satisfying the following conditions:

- (i) $\sum_{n=1}^{\infty} (h_n 1) < \infty;$
- (ii) There exist constants $\tau_1, \tau_2 \in (0, 1)$ such that

 $\tau_1 \le 1 - \alpha_n \le \tau_2, \qquad n \ge 1.$

Then the implicit iterative sequence $\{x_n\}$ defined by (1.3) converges weakly to a common fixed point of $\{T_1, T_2, \dots, T_N\}$ in K.

Only Theorem 1.1 has been obtained from the weak convergence problem for the sequence defined by (1.3). The purpose of this paper is to prove a new weak convergence theorem of the iteration scheme (1.3) for N asymptotically nonexpansive mappings in a uniformly convex Banach space.