The Dependence Problem for a Class of Polynomial Maps in Dimension Four

Jin $Yong^{1,2}$ and $Guo Hong-bo^2$

College of Science, Civil Aviation University of China, Tianjin, 300300)
(2. School of Mathematics, Jilin University, Changchun, 130012)

Communicated by Du Xian-kun

Abstract: Let *h* be a polynomial in four variables with the singular Hessian $\mathcal{H}h$ and the gradient ∇h and *R* be a nonzero relation of ∇h . Set $H = \nabla R(\nabla h)$. We prove that the components of *H* are linearly dependent when $\mathrm{rk}\mathcal{H}h \leq 2$ and give a necessary and sufficient condition for the components of *H* to be linearly dependent when $\mathrm{rk}\mathcal{H}h = 3$.

 ${\bf Key}$ words: dependence problem, linear dependence, quasi-translation

2010 MR subject classification: 14R99

Document code: A

Article ID: 1674-5647(2014)04-0289-06 DOI: 10.13447/j.1674-5647.2014.04.01

1 Introduction

Throughout this paper k denotes a field of characteristic 0, and $k[X]:=k[x_1, x_2, \cdots, x_n]$ denotes the polynomial ring in the variables x_1, x_2, \cdots, x_n over k.

The linear dependence problem asks whether the components of a polynomial map H: $k^n \to k^n$ are linearly dependent over k if the Jacobian matrix $\mathcal{J}H$ is nilpotent. Partial positive answers to the problem are obtained in [1–3]. By studying quasi-translation De Bondt^[4–5] solved the problem negatively for all $n \ge 5$ in the homogeneous case and for all $n \ge 4$ in the non-homogeneous case. A polynomial map X + H is called a quasi-translation if its inverse is X - H. De Bondt^[5] furthermore gave examples of quasi-translations with the components of H linearly independent for $n \ge 6$ in the homogeneous case and for $n \ge 4$ in the non-homogeneous case, and he also proved that no such examples exist when $n \le 4$ for the homogeneous case and when $n \le 3$ for the non-homogeneous case.

Received date: Nov. 10, 2011.

Foundation item: The Scientific Research Foundation (2012QD05X) of Civil Aviation University of China and the Fundamental Research Funds (3122014K011) for the Central Universities of China.

E-mail address: kingmeng@126.com (Jin Y).

For a polynomial $h \in k[X]$, denote by $\mathcal{H}h$ its Hessian matrix and by ∇h its gradient. If $R(Y) \in k[Y]$ is a relation of ∇h , that is, $R(\nabla h) = 0$, we set

$$H := \nabla R(\nabla h) = \left(\frac{\partial R}{\partial x_1}(\nabla h), \ \frac{\partial R}{\partial x_2}(\nabla h), \ \cdots, \ \frac{\partial R}{\partial x_n}(\nabla h)\right).$$

De Bondt^[5] proved that X + H is a quasi-translation, called quasi-translation corresponding to h, and he asked whether the components of H are linearly dependent.

As mentioned above, for $n \leq 3$ the answer to the problem of De Bondt is affirmative and it is also affirmative in the case n = 4 and H is homogenous. In this paper, we study the problem for n = 4. We prove that the components of H are linearly dependent if the rank $\mathrm{rk}\mathcal{H}h \leq 2$. For the case $\mathrm{rk}\mathcal{H}h = 3$ and $H \neq 0$, we prove that the components of H are linearly dependent if and only if the components of ∇g are linearly dependent, where g is a generator of the relation ideal of ∇h . Finally, we give an algorithm to decide whether the components of H are linearly dependent.

2 Main Results

For $g, h \in k[X]$, we say that they are linearly equivalent, if there exists a $T \in Gl_n(k)$ such that g = h(TX). In this case, $\nabla g = T^t \nabla h(TX)$, $\mathcal{H}g = T^t \mathcal{H}h(TX)T$, and $\mathrm{rk}\mathcal{H}g = \mathrm{rk}\mathcal{H}h$, where T^t denotes the transpose of T.

Lemma 2.1 Suppose that $g, h \in k[X]$ are linearly equivalent. Then there is a nonzero relation R of ∇h such that the components of $\nabla R(\nabla h)$ are linearly dependent if and only if there is a nonzero relation S of ∇g such that the components of $\nabla S(\nabla g)$ are linearly dependent.

Proof. It suffices to prove the assertion for one direction by the definition of linear equivalence. Let g = h(TX) for some $T \in Gl_n(k)$ and $R \in k[Y] := k[y_1, \dots, y_n]$ be a nonzero relation of ∇h such that the components of $H = \nabla R(\nabla h)$ are linearly dependent. Suppose $0 \neq \lambda \in k^n$ such that $\lambda H = 0$. Take $S(Y) = R((T^t)^{-1}Y)$. Then

$$S(\nabla g) = S(T^t \nabla h(TX)) = R((T^t)^{-1}Y) \mid_{Y=T^t \nabla h(TX)} = R(\nabla h(TX)) = 0.$$

Let $G = \nabla S(\nabla g)$. Note that

$$\nabla S(\nabla g) = T^{-1} \nabla R((T^t)^{-1}Y) \mid_{Y = \nabla g}$$

= $T^{-1} \nabla R((T^t)^{-1} \nabla g)$
= $T^{-1} \nabla R((T^t)^{-1}(T^t \nabla h(TX)))$
= $T^{-1} \nabla R(\nabla h(TX)).$

Let $\beta = \lambda T$. Then $\beta \neq 0$ and

$$\beta G = \beta T^{-1} \nabla R(\nabla h(TX)) = \lambda T T^{-1} \nabla R(\nabla h(TX)) = \lambda H(TX) = 0,$$

as desired.

For $h \in k[X]$ and a relation R of ∇h , let $H = \nabla R(\nabla h)$. Taking Jacobian matrix on both sides, we have $\mathcal{J}H = \mathcal{J}(\nabla R) \mid_{X=\nabla h} \mathcal{H}(h)$. Hence $\operatorname{rk}\mathcal{J}H \leq \operatorname{rk}\mathcal{H}h$.