The Dependence Problem for a Class of Polynomial Maps in Dimension Four

Jin Yong ${ }^{1,2}$ And Guo Hong-BO ${ }^{2}$
(1. College of Science, Civil Aviation University of China, Tianjin, 300300)
(2. School of Mathematics, Jilin University, Changchun, 130012)
Communicated by Du Xian-kun

Abstract

Let h be a polynomial in four variables with the singular Hessian $\mathcal{H} h$ and the gradient ∇h and R be a nonzero relation of ∇h. Set $H=\nabla R(\nabla h)$. We prove that the components of H are linearly dependent when rk $\mathcal{H} h \leq 2$ and give a necessary and sufficient condition for the components of H to be linearly dependent when $\operatorname{rk} \mathcal{H} h=3$.

Key words: dependence problem, linear dependence, quasi-translation
2010 MR subject classification: 14R99
Document code: A
Article ID: 1674-5647(2014)04-0289-06
DOI: 10.13447/j.1674-5647.2014.04.01

1 Introduction

Throughout this paper k denotes a field of characteristic 0 , and $k[X]:=k\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ denotes the polynomial ring in the variables $x_{1}, x_{2}, \cdots, x_{n}$ over k.

The linear dependence problem asks whether the components of a polynomial map H : $k^{n} \rightarrow k^{n}$ are linearly dependent over k if the Jacobian matrix $\mathcal{J} H$ is nilpotent. Partial positive answers to the problem are obtained in $[1-3]$. By studying quasi-translation De Bondt ${ }^{[4-5]}$ solved the problem negatively for all $n \geq 5$ in the homogeneous case and for all $n \geq 4$ in the non-homogeneous case. A polynomial map $X+H$ is called a quasi-translation if its inverse is $X-H$. De Bondt ${ }^{[5]}$ furthermore gave examples of quasi-translations with the components of H linearly independent for $n \geq 6$ in the homogeneous case and for $n \geq 4$ in the non-homogeneous case, and he also proved that no such examples exist when $n \leq 4$ for the homogeneous case and when $n \leq 3$ for the non-homogeneous case.

[^0]For a polynomial $h \in k[X]$, denote by $\mathcal{H} h$ its Hessian matrix and by ∇h its gradient. If $R(Y) \in k[Y]$ is a relation of ∇h, that is, $R(\nabla h)=0$, we set

$$
H:=\nabla R(\nabla h)=\left(\frac{\partial R}{\partial x_{1}}(\nabla h), \frac{\partial R}{\partial x_{2}}(\nabla h), \cdots, \frac{\partial R}{\partial x_{n}}(\nabla h)\right) .
$$

De Bondt ${ }^{[5]}$ proved that $X+H$ is a quasi-translation, called quasi-translation corresponding to h, and he asked whether the components of H are linearly dependent.

As mentioned above, for $n \leq 3$ the answer to the problem of De Bondt is affirmative and it is also affirmative in the case $n=4$ and H is homogenous. In this paper, we study the problem for $n=4$. We prove that the components of H are linearly dependent if the $\operatorname{rank} \operatorname{rk} \mathcal{H} h \leq 2$. For the case $\operatorname{rk} \mathcal{H} h=3$ and $H \neq 0$, we prove that the components of H are linearly dependent if and only if the components of ∇g are linearly dependent, where g is a generator of the relation ideal of ∇h. Finally, we give an algorithm to decide whether the components of H are linearly dependent.

2 Main Results

For $g, h \in k[X]$, we say that they are linearly equivalent, if there exists a $T \in G l_{n}(k)$ such that $g=h(T X)$. In this case, $\nabla g=T^{t} \nabla h(T X), \mathcal{H} g=T^{t} \mathcal{H} h(T X) T$, and $\operatorname{rk} \mathcal{H} g=\operatorname{rk} \mathcal{H} h$, where T^{t} denotes the transpose of T.

Lemma 2.1 Suppose that $g, h \in k[X]$ are linearly equivalent. Then there is a nonzero relation R of ∇h such that the components of $\nabla R(\nabla h)$ are linearly dependent if and only if there is a nonzero relation S of ∇g such that the components of $\nabla S(\nabla g)$ are linearly dependent.

Proof. It suffices to prove the assertion for one direction by the definition of linear equivalence. Let $g=h(T X)$ for some $T \in G l_{n}(k)$ and $R \in k[Y]:=k\left[y_{1}, \cdots, y_{n}\right]$ be a nonzero relation of ∇h such that the components of $H=\nabla R(\nabla h)$ are linearly dependent. Suppose $0 \neq \lambda \in k^{n}$ such that $\lambda H=0$. Take $S(Y)=R\left(\left(T^{t}\right)^{-1} Y\right)$. Then

$$
S(\nabla g)=S\left(T^{t} \nabla h(T X)\right)=\left.R\left(\left(T^{t}\right)^{-1} Y\right)\right|_{Y=T^{t} \nabla h(T X)}=R(\nabla h(T X))=0 .
$$

Let $G=\nabla S(\nabla g)$. Note that

$$
\begin{aligned}
\nabla S(\nabla g) & =\left.T^{-1} \nabla R\left(\left(T^{t}\right)^{-1} Y\right)\right|_{Y=\nabla g} \\
& =T^{-1} \nabla R\left(\left(T^{t}\right)^{-1} \nabla g\right) \\
& =T^{-1} \nabla R\left(\left(T^{t}\right)^{-1}\left(T^{t} \nabla h(T X)\right)\right) \\
& =T^{-1} \nabla R(\nabla h(T X)) .
\end{aligned}
$$

Let $\beta=\lambda T$. Then $\beta \neq 0$ and

$$
\beta G=\beta T^{-1} \nabla R(\nabla h(T X))=\lambda T T^{-1} \nabla R(\nabla h(T X))=\lambda H(T X)=0,
$$

as desired.
For $h \in k[X]$ and a relation R of ∇h, let $H=\nabla R(\nabla h)$. Taking Jacobian matrix on both sides, we have $\mathcal{J} H=\left.\mathcal{J}(\nabla R)\right|_{X=\nabla h} \mathcal{H}(h)$. Hence $\operatorname{rk} \mathcal{J} H \leq \operatorname{rk} \mathcal{H} h$.

[^0]: Received date: Nov. 10, 2011.
 Foundation item: The Scientific Research Foundation (2012QD05X) of Civil Aviation University of China and the Fundamental Research Funds (3122014K011) for the Central Universities of China.

 E-mail address: kingmeng@126.com (Jin Y).

