```
Communications
IN
Mathematical
RESEARCH
31(1)(2015), 62-70
```


Derivative Estimates for the Solution of Hyperbolic Affine Sphere Equation

WU YA-DONG
(College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, 330022)

Communicated by Rong Xiao-chun

Abstract

Considering the hyperbolic affine sphere equation in a smooth strictly convex bounded domain with zero boundary values, the sharp derivative estimates of any order for its convex solution are obtained.

Key words: hyperbolic affine sphere, Monge-Ampère equation, derivative estimate 2010 MR subject classification: 53A15, 35J65
Document code: A
Article ID: 1674-5647(2015)01-0062-09
DOI: 10.13447/j.1674-5647.2015.01.07

1 Introduction

In affine differential geometry, the classification of complete hyperbolic affine hyperspheres has attracted the attention of many geometers. By a Legendre transformation, the classification of Euclidean-complete hyperbolic hyperspheres is reduced to the study of the following boundary value problem

$$
\begin{cases}\operatorname{det}\left(\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}\right)=(-u(x))^{-n-2} & \text { in } \Omega \tag{1.1}\\ u(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbf{R}^{n}$ is a bounded convex domain. Calabi ${ }^{[1]}$ conjectured that there is a unique convex solution to (1.1). Loewner and Nirenberg ${ }^{[2]}$ solved (1.1) in the cases of domains in \mathbf{R}^{2} with smooth boundary. Cheng and Yau ${ }^{[3]}$ showed there always exists a convex solution $u \in C^{\infty}(\Omega) \cap C^{0}(\bar{\Omega})$, and the uniqueness follows from the maximum principal.

When $\Omega=B^{n}(1)$, the unit ball in \mathbf{R}^{n}, the convex solution of (1.1) is

$$
\begin{equation*}
u_{0}=-\sqrt{1-\sum_{1 \leq k \leq n} x_{k}^{2}} . \tag{1.2}
\end{equation*}
$$

When Ω is projectively homogeneous, Sasaki ${ }^{[4]}$ found that the convex solution of (1.1) and the characteristic function χ of domain Ω have the following relation:

$$
u=C_{0} \chi^{-\frac{1}{n+1}} \quad \text { for a constant } C_{0} .
$$

Also, Sasaki and Yagi ${ }^{[5]}$ obtained an expansion of derivatives of the characteristic function χ along the boundary of the smooth convex bounded domain. Referring the Fefferman's expansion of the Bergman kernel on smooth strictly pseudoconvex domains (see [6]), Sasaki ${ }^{[7]}$ obtained an asymptotic expansion form of χ with respect to the solution u :

$$
\begin{equation*}
\chi=C_{0} u^{-(n+1)}\left[1+\frac{5}{24(n-1)} F u^{2}+\text { the higher orders of } u\right] \tag{1.3}
\end{equation*}
$$

where F is a smooth function on $\bar{\Omega}$.
In this paper, we confine ourselves to the case that Ω is a strictly convex bounded domain with smooth boundary. By the barrier functions on the balls, the convex solution of (1.1) has the bound:

$$
\begin{equation*}
\frac{1}{C} d(x)^{\frac{1}{2}} \leq-u(x) \leq C d(x)^{\frac{1}{2}} \tag{1.4}
\end{equation*}
$$

where $d(x)=: \operatorname{dist}(x, \partial \Omega)$, and C is a positive constant depending on Ω and n.
By (1.4) and the convexity of u, the gradient estimate is given by:

$$
\begin{equation*}
\frac{1}{C} d(x)^{-\frac{1}{2}} \leq|\operatorname{grad} u| \leq C d(x)^{-\frac{1}{2}} \tag{1.5}
\end{equation*}
$$

Loewner and Nirenberg ${ }^{[2]}$ first obtained the sharp second order estimates in dimension two. Their methods and Pogorelov's calculations also gave bound for the higher dimensions (see [8]):

$$
\begin{equation*}
\left|u_{i j}\right| \leq C d(x)^{-\frac{3}{2}}, \quad 1 \leq i, j \leq n \tag{1.6}
\end{equation*}
$$

Now we introduce the basic notations. For a multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$, where $\alpha_{i}, i=1,2, \cdots, n$, are non-negative integers with $|\alpha|=\sum_{1 \leq i \leq n} \alpha_{i}$, we define

$$
\begin{aligned}
D_{i} & =\frac{\partial}{\partial x_{i}}, \quad D_{i}^{\alpha_{i}}=\frac{\partial^{\alpha_{i}}}{\partial x_{i}^{\alpha_{i}}}, \quad i=1,2, \cdots, n, \\
D^{\alpha} & =D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}} .
\end{aligned}
$$

In this paper, by the finite geometry of complete hyperbolic affine sphere as stated in Lemma 2.1, we obtain derivative estimates of any order:

Theorem 1.1 For $n=2$, the convex solution of (1.1) satisfies

$$
\begin{equation*}
\left|D^{\alpha}(u)\right| \leq C d(x)^{\frac{1}{2}-|\alpha|}, \quad|\alpha|=0,1,2, \cdots, \tag{1.7}
\end{equation*}
$$

where C is a constant depending on Ω and $|\alpha|$.
Remark 1.1 For $|\alpha|=3$, the estimate (1.7) holds for any dimension $n \geq 2$. The sharpness of exponent " $\frac{1}{2}-|\alpha|$ " can be seen in the case that Ω is projectively homogeneous (see [5]).

