Strong Convergence for a Countable Family of Total Quasi- ϕ -asymptotically Nonexpansive Nonself Mappings in Banach Space

WANG XIONG-RUI AND QUAN JING

(Institute of Mathematics, Yibin University, Yibin, Sichuan, 644007)

Communicated by Ji You-qing

Abstract: The purpose of this article is to introduce a class of total quasi- ϕ -asymptotically nonexpansive nonself mappings. Strong convergence theorems for common fixed points of a countable family of total quasi- ϕ -asymptotically nonexpansive mappings are established in the framework of Banach spaces based on modified Halpern and Mann-type iteration algorithm. The main results presented in this article extend and improve the corresponding results of many authors.

Key words: strong convergence, total quasi- ϕ -asymptotically nonexpansive nonself, generalized projection

2010 MR subject classification: 47H05, 47H09, 49M05

Document code: A

Article ID: 1674-5647(2015)01-0031-09 **DOI:** 10.13447/j.1674-5647.2015.01.04

1 Introduction and Preliminaries

Throughout this article we assume that E is a real Banach space with norm $\|\cdot\|$, E^* is the dual space of E, $\langle \cdot, \cdot \rangle$ is the duality pairing between E and E^* , C is a nonempty closed convex subset of E, \mathbf{N} and \mathbf{R}^+ denote the set of natural numbers and the set of nonnegative real numbers, respectively. The mapping $J: E \to 2^{E^*}$ defined by

$$J(x) = \{ f^* \in E^* : \langle x, f^* \rangle = \|x\|^2; \ \|f^*\| = \|x\|, \ x \in E \}$$

is called the normalized duality mapping. Let $T : C \to C$ be a nonlinear mapping, and F(T) denotes the set of fixed points of mapping T.

A subset C of E is said to be retract if there exists a continuous mapping $P: E \to C$ such that Px = x for all $x \in C$. Every closed convex subset of a uniformly convex Banach

Received date: Dec. 16, 2012.

Foundation item: Scientific Research Fund (2011JYZ010) of Science Technology Department of Sichuan Province and Scientific Research Fund (11ZA172 and 12ZB345) of Sichuan Provincial Education Department.

E-mail address: wxr888x@163.com (Wang X R).

VOL. 31

space is a retraction. A mapping $P: E \to E$ is said to be a retraction if $P^2 = P$. Note that if a mapping P is a retraction, then Pz = z for all $z \in R(P)$, the range of P. A mapping $P: E \to C$ is said to be a nonexpansive retraction, if it is nonexpansive and it is a retraction from E to C.

In this paper, we assume that E is a smooth, strictly convex and reflexive Banach space and C is a nonempty closed convex subset of E. We use $\phi : E \times E \to \mathbf{R}^+$ to denote the Lyapunov function, which is defined by

$$\phi(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2, \qquad x, y \in E$$

It is obvious that

0

$$(\|x\| - \|y\|)^2 \le \phi(x, y) \le (\|x\| + \|y\|)^2, \qquad x, y \in E,$$
(1.1)

and

$$\phi(x, J^{-1}(\lambda Jy + (1-\lambda)Jz)) \le \lambda \phi(x, y) + (1-\lambda)\phi(x, z),$$

$$\phi(x, y) = \phi(x, z) + \phi(z, y) + 2\langle x - z, Jz - Jy \rangle, \quad x, y, z \in E.$$
(1.2)

Following Alber^[1], the generalized projection $\Pi_C x : E \to C$ is defined by

$$\Pi_C x = \arg \inf_{y \in C} \phi(y, x), \qquad x \in E.$$

Lemma 1.1^[1] Let E be a smooth, strictly convex, and reflexive Banach space, and C be a nonempty closed convex subset of E. Then the following conclusions hold:

- (i) $\phi(x, \Pi_C y) + \phi(\Pi_C y, y) \le \phi(x, y)$ for all $x \in C, y \in E$;
- (ii) If $x \in E$ and $z \in C$, then $z = \prod_C x$ if and only if $\langle z y, Jx Jz \rangle \ge 0$ for all $y \in C$;
- (iii) For any $x, y \in E$, $\phi(x, y) = 0$ if and only if x = y.

Lemma 1.2^[2] Let E be a uniformly convex and smooth Banach space, and $\{x_n\}$ and $\{y_n\}$ be two sequences of E. If $\phi(x_n, y_n) \to 0$ and either $\{x_n\}$ or $\{y_n\}$ is bounded, then $||x_n - y_n|| \to 0$.

Recently, many researchers have focused on studying the convergence of iterative scheme for quasi- ϕ -asymptotically nonexspansive mappings and total quasi- ϕ -asymptotically nonexspansive mappings. Related works can be found in [3–10]. The quasi- ϕ -nonexspansive, quasi- ϕ -asymptotically nonexspansive and total quasi- ϕ -asymptotically nonexspansive mappings are defined as:

Definition 1.1 A mapping $T : C \to C$ is said to be quasi- ϕ -nonexpansive, if $F(T) \neq \emptyset$ and $\phi(u, Tx) \leq \phi(u, x)$ holds for all $x \in C$, $u \in F(T)$.

A mapping $T: C \to C$ is said to be quasi- ϕ -asymptotically nonexpansive, if $F(T) \neq \emptyset$, and there exists a sequence $\{k_n\} \subset [1, +\infty]$ with $k_n \to 1$ as $n \to \infty$ such that $\phi(p, T^n x) \leq k_n \phi(p, x)$ holds for all $x \in C$, $p \in F(T)$ and all $n \in \mathbb{N}$.

A mapping $T: C \to C$ is said to be total quasi- ϕ -asymptotically nonexpansive, if $F(T) \neq \emptyset$, and there exist sequences $\{\mu_n\}, \{\nu_n\}$ with $\mu_n, \nu_n \to 0$ as $n \to \infty$ and a strictly increasing continuous function $\psi: \mathbf{R}^+ \to \mathbf{R}^+$ with $\psi(0) = 0$ such that

$$\phi(p, T^n x) \le \phi(p, x) + \mu_n \psi(\phi(p, x)) + \nu_n$$

holds for all $x \in C$, $p \in F(T)$ and all $n \in \mathbf{N}$.