Weak Convergence Theorems for Nonself Mappings

LIU YONG-QUAN AND GUO WEI-PING

(School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009)

Communicated by Ji You-qing

Abstract: Let E be a real uniformly convex and smooth Banach space, and K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction. Let $T_1, T_2 : K \to E$ be two weakly inward nonself asymptotically nonexpansive mappings with respect to P with a sequence $\{k_n^{(i)}\} \subset [1, \infty)$ (i = 1, 2), and $F := F(T_1) \bigcap F(T_2) \neq \emptyset$. An iterative sequence for approximation common fixed points of the two nonself asymptotically nonexpansive mappings is discussed. If E has also a Fréchet differentiable norm or its dual E^* has Kadec-Klee property, then weak convergence theorems are obtained.

Key words: asymptotically nonexpansive nonself-mapping, weak convergence, uniformly convex Banach space, common fixed point, smooth Banach space

2010 MR subject classification: 47H09, 47H10

Document code: A

Article ID: 1674-5647(2015)01-0015-08 DOI: 10.13447/j.1674-5647.2015.01.02

1 Introduction and Preliminaries

Throughout this work, we assume that E is a real Banach space, E^* is the dual space of E and $J: E \to 2^{E^*}$ is the normalized duality mapping defined by

 $J(x) = \{ f \in E^* : \langle x, f \rangle = \|x\| \|f\|, \|f\| = \|x\| \}, \qquad x \in E,$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between E and E^* . A single-valued normalized duality mapping is denoted by j. It is well known that if E is a smooth Banach space, then J is single-valued.

A Banach space E is said to have a Fréchet differentiable norm (see [1]), if for all $x \in U = \{x \in E : ||x|| = 1\}$, the limit $\lim_{t \to 0} \frac{||x + ty|| - ||x||}{t}$ exists and is attained uniformly in

Received date: Nov. 21, 2012.

Foundation item: The NSF (11271282) of China.

E-mail address: lyq60913016@hotmail.com (Liu Y Q).

 $y \in U$. In this case there exists an increasing function $b : [0, \infty) \to [0, \infty)$ with $\lim_{t \to 0^+} \frac{b(t)}{t} = 0$ such that

 $\frac{1}{2} \|x\|^2 + \langle h, j(x) \rangle \le \frac{1}{2} \|x+h\|^2 \le \frac{1}{2} \|x\|^2 + \langle h, j(x) \rangle + b(\|h\|), \qquad x, h \in E.$ (1.1)

A subset K of E is said to be retract of E if there exists a continuous mapping $P : E \to K$ such that Px = x for all $x \in K$. Every closed convex subset of a uniformly convex Banach space is retract. A mapping $P : E \to E$ is said to be a retraction if $P^2 = P$. It follows that if a mapping P is a retraction, then Py = y for all y in the range of P. Let C and K be subsets of a Banach space E. A mapping P from C into K is called sunny if P(Px+t(x-Px)) = Pxfor $x \in C$ with $Px + t(x - Px) \in C$ and $t \ge 0$.

For any $x \in K$, the inward set $I_K(x)$ is defined as follows:

$$I_{K}(x) = \{ y \in E : y = x + \lambda(z - x), \ z \in K, \ \lambda \ge 0 \}$$

A mapping $T: K \to E$ is said to satisfy the inward condition if $Tx \in I_K(x)$ for all $x \in K$. T is said to be weakly inward if $Tx \in cl_K(x)$ for each $x \in K$, where $cl_K(x)$ is the closure of $I_K(x)$.

A Banach space E is said to have the Kadec-Klee property (see [2]) if for every sequence $\{x_n\}$ in E, with $x_n \to x$ weakly and $||x_n|| \to ||x||$, it follows that $x_n \to x$ strongly.

We denote by F(T) the set of fixed points of T, i.e., $F(T) = \{x \in K : Tx = x\}$, and by $F := F(T_1) \bigcap F(T_2)$ the set of common fixed points of two mappings T_1 and T_2 .

Definition 1.1^[3] Let E be a real normed linear space, and K be a nonempty subset of E. Let $P: E \to K$ be the nonexpansive retraction of E onto K. A nonself mapping $T: K \to E$ is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that for any $x, y \in K$, $||T(PT)^{n-1}x - T(PT)^{n-1}y|| \leq k_n ||x - y||, n \geq 1$. T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that for all $x, y \in K$, $||T(PT)^{n-1}x - T(PT)^{n-1}y|| \leq L||x - y||, n \geq 1$.

Let K be a nonempty closed convex subset of a real uniformly convex Banach space E. Nonself asymptotically nonexpansive mappings have been studied by many authors (see [3–8]). Chidume *et al.*^[3] studied the following iteration scheme:

$$\begin{cases} x_1 \in K, \\ x_{n+1} = P((1 - \alpha_n)x_n + \alpha_n T(PT)^{n-1}x_n), \quad n \ge 1, \end{cases}$$
(1.2)

where $\{\alpha_n\}$ is a sequence in (0, 1), and proved some strong and weak convergence theorems of the iteration scheme (1.2).

Wang^[4] studied the following iteration scheme:

$$\begin{cases} x_1 \in K, \\ x_{n+1} = P((1 - \alpha_n)x_n + \alpha_n T(PT)^{n-1}y_n), \\ y_n = P((1 - \beta_n)x_n + \beta_n T(PT)^{n-1}x_n), \quad n \ge 1, \end{cases}$$
(1.3)

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in $[0, 1), T_1, T_2 : K \to E$ are two asymptotically nonexpansive nonself mappings, and proved strong and weak convergence theorems of the iteration scheme (1.3). Guo and Guo^[5] completed the weak convergence theorems of the iteration scheme (1.3).