Vertex-distinguishing E-total Coloring of Complete Bipartite Graph $K_{7, n}$ when $7 \leq n \leq 95$

Chen Xiang-en
(College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070)
Communicated by Du Xian-kun

Abstract

Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let $C(x)$ denote the set of colors of vertex x and of the edges incident with x, we call $C(x)$ the color set of x. If $C(u) \neq C(v)$ for any two different vertices u and v of $V(G)$, then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by $\chi_{v t}^{e}(G)$ and is called the VDET chromatic number of G. The VDET coloring of complete bipartite graph $K_{7, n}(7 \leq n \leq 95)$ is discussed in this paper and the VDET chromatic number of $K_{7, n}(7 \leq n \leq 95)$ has been obtained.

Key words: graph, complete bipartite graph, E-total coloring, vertex-distinguishing E-total coloring, vertex-distinguishing E-total chromatic number
2010 MR subject classification: 05C15
Document code: A
Article ID: 1674-5647(2016)04-0359-16
DOI: 10.13447/j.1674-5647.2016.04.08

1 Introduction and Notations

Graph theory is the historical foundation of the science of networks and the basis of information science. The problem in which we are interested is a particular case of the great variety of different ways of labeling a graph.

For an edge coloring (proper or not) g of G and a vertex x of G, let $S(x)$ be the set (not multiset) of colors of the edges incident with x under g.

[^0]For a proper edge coloring, if $S(u) \neq S(v)$ for any two distinct vertices u and v, then the coloring is called a vertex-distinguishing proper edge coloring. The minimum number of colors required for a vertex-distinguishing proper edge coloring of G is denoted by $\chi_{s}^{\prime}(G)$. This coloring is proposed in [1] and [2] independently. Many scholars have studied this parameter in [1]-[7].

For an edge coloring which is not necessarily proper, if $S(u) \neq S(v)$ for any two distinct vertices u and v, then the coloring is called a point distinguishing edge coloring. The minimum number of colors required for a point distinguishing edge coloring of G is denoted by $\chi_{0}(G)$. This coloring is proposed by Harary et al. ${ }^{[8]}$ This parameter has been researched in many papers (see [9]-[14]).

For a total coloring (proper or not) f of G and a vertex x of G, let $C(x)$ be the set (not multiset) of colors of vertex x and edges incident with x under f.

For a proper total coloring, if $C(u) \neq C(v)$ for any two distinct vertices u and v, then the coloring is called a vertex-distinguishing (proper) total coloring, or a VDT coloring of G for short. The minimum number of colors required for a VDT coloring of G is denoted by $\chi_{v t}(G)$.

The vertex-distinguishing proper total colorings of graphs are introduced and studied by Zhang et al. ${ }^{[15]}$. After studying the vertex-distinguishing proper total coloring of complete graph, star, complete bipartite graph, wheel, fan, path and cycle, a conjecture was proposed by Zhang et al. ${ }^{[15]}$: Let $\mu(G)=\min \left\{k:\binom{k}{i+1} \geq n_{i}, \delta \leq i \leq \Delta\right\}$, then $\chi_{v t}(G)=\mu(G)$ or $\mu(G)+1$. In [16], the vertex-distinguishing total coloring of n-cube were discussed, respectively. In [17], the relations of vertex-distinguishing total chromatic numbers between a subgraph and its supergraph had been studied.

In the following we consider a kind of not necessarily proper total coloring which is vertex-distinguishing. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. If f is an E-total coloring of graph G and for any $u, v \in V(G), u \neq v$, we have $C(u) \neq C(v)$, then f is called a vertex-distinguishing E-total coloring, or a VDET coloring briefly. The minimum number of colors required for a VDET coloring of G is called the vertex-distinguishing E-total chromatic number of G and is denoted by $\chi_{v t}^{e}(G)$.

The VDET colorings of complete graph, complete bipartite graph $K_{2, n}$, star, wheel, fan, path and cycle were discussed by Chen et al. ${ }^{[18]}$. A parameter was introduced in [18]:

$$
\eta(G)=\min \left\{l:\binom{l}{2}+\binom{l}{3}+\cdots+\binom{l}{i+1} \geq n_{\delta}+n_{\delta+1}+\cdots+n_{i}, 1 \leq \delta \leq i \leq \Delta\right\}
$$

where G is a graph with no isolated vertex and n_{i} denotes the number of vertices with degree $i, \delta \leq i \leq \Delta$. At the end of the paper [18], a conjecture was proposed.

Conjecture 1.1 ${ }^{[18]} \quad$ For a graph G with no isolated vertices and chromatic number at most 5 , we have $\chi_{v t}^{e}(G)=\eta(G)$ or $\eta(G)+1$.

We have studied the vertex-distinguishing E-total colorings of $m C_{3}$ and $m C_{4}$ in [19] and confirmed Conjecture 1.1 for these two kinds of graphs.

[^0]: Received date: Sept. 22, 2015
 Foundation item: The NSF (61163037) of China.
 E-mail address: chenxe@nwnu.edu.cn (Chen X E).

