On Skew Triangular Matrix Rings

Wang Wei-liang ${ }^{1}$, Wang $\mathrm{YaO}^{2,}{ }^{*}$ and Ren Yan-LI ${ }^{3}$
(1. School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072)
(2. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044)
(3. School of Information Engineering, Nanjing Xiaozhuang University, Nanjing, 211171)

Communicated by Du Xian-kun

Abstract

Let α be a nonzero endomorphism of a ring R, n be a positive integer and $T_{n}(R, \alpha)$ be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by $T_{n}(R, \alpha)$. Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring $R[x ; \alpha] /\left(x^{n}\right)$, where $R[x ; \alpha]$ is the skew polynomial ring.

Key words: skew triangular matrix ring, skew polynomial ring, weak zip property, strongly prime radical, generalized prime radical

2010 MR subject classification: 16N20, 16S36
Document code: A
Article ID: 1674-5647(2016)03-0259-13
DOI: 10.13447/j.1674-5647.2016.03.08

1 Introduction

Throughout this paper, R denotes an associative ring with identity and α is a nonzero endomorphism of R. For a given ring R, we use $\operatorname{nil}(R), N_{i l_{*}}(R), N i l^{*}(R), L-r a d(R)$ and $J(R)$ to denote the set of all nilpotent elements, the prime radical, the upper nilradical, the Levitzki radical and the Jacobson radical of R, respectively. We denote by $R[x ; \alpha]$ the skew polynomial ring, whose elements are the polynomials over R, the addition is defined as usual, and the multiplication subject to the relation $x r=\alpha(r) x$ for any $r \in R$. For a positive integer n, the skew triangular matrix ring is defined as

[^0]\[

T_{n}(R, \alpha)=\left\{\left.\left($$
\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} \\
0 & a_{0} & a_{1} & \ldots & a_{n-2} \\
0 & 0 & a_{0} & \ldots & a_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{0}
\end{array}
$$\right) \right\rvert\, a_{i} \in R, i=0,1, \cdots, n-1\right\}
\]

with addition pointwise and multiplication given by

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n-1} \\
0 & a_{0} & a_{1} & \ldots & a_{n-2} \\
0 & 0 & a_{0} & \ldots & a_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{0}
\end{array}\right)\left(\begin{array}{ccccc}
b_{0} & b_{1} & b_{2} & \ldots & b_{n-1} \\
0 & b_{0} & b_{1} & \ldots & b_{n-2} \\
0 & 0 & b_{0} & \ldots & b_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & b_{0}
\end{array}\right)=\left(\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{n-1} \\
0 & c_{0} & c_{1} & \ldots & c_{n-2} \\
0 & 0 & c_{0} & \ldots & c_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & c_{0}
\end{array}\right)
$$

where

$$
c_{i}=a_{0} \alpha^{0}\left(b_{i}\right)+a_{1} \alpha^{1}\left(b_{i-1}\right)+\cdots+a_{i} \alpha^{i}\left(b_{0}\right), \quad 0 \leq i \leq n-1 .
$$

We denote elements of $T_{n}(R, \alpha)$ by $\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$. It is easy to verify that the $\sigma: T_{n}(R, \alpha) \longrightarrow R[x ; \alpha] /\left(x^{n}\right)$ defined by $\sigma\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)=a_{0}+a_{1} x+\cdots+a_{n-1} x+\left(x^{n}\right)$ is a ring isomorphism, where $a_{i} \in R, 0 \leq i \leq n-1,\left(x^{n}\right)$ is the ideal generated by x^{n}.

The triangular matrix ring $T_{n}(R)$ and the quotient $R[x] /\left(x^{n}\right)$ of a polynomial ring $R[x]$ has attracted a lot of attention (see [1]-[3]). Nasr-Isfahani and Moussavi ${ }^{[4]}$ discussed their right mininjective, right T-nilpotent and right Kasch property. In recent, Nasr-Isfahani ${ }^{[5]}$ extended the study to the skew triangular matrix ring $T_{n}(R, \alpha)$ and gave their prime, primitive and maximal ideals. We continue in this paper investigate some properties of $T_{n}(R, \alpha)$ and determine the strongly prime radical, generalized prime radical and Behrens radicals of the quotient ring $R[x ; \alpha] /\left(x^{n}\right)$.

2 Properties Related to Nilpotent Elements

Recall that a ring R is reduced if R has no nonzero nilpotent elements, R is an NI ring if $\operatorname{nil}(R)=N i l^{*}(R), R$ is 2-primal if $\operatorname{nil}(R)=N i l_{*}(R), R$ is weakly 2 -primal if $\operatorname{nil}(R)=L-$ $\operatorname{rad}(R)$, and R is locally 2-primal if each finite subset generates a 2 -primal ring. A ring R is called nil-semicommutative if for every $a, b \in R, a b \in \operatorname{nil}(R)$ implies $a R b \subseteq \operatorname{nil}(R)$, and R is called weakly semicommutative if for any $a, b \in R$, $a b=0$ implies $a R b \subseteq \operatorname{nil}(R)$. The following implications hold:

$$
\begin{aligned}
\text { reduced } & \Rightarrow 2 \text {-primal } \Rightarrow \text { locally } 2 \text {-primal } \Rightarrow \text { weakly } 2 \text {-primal } \Rightarrow \text { NI } \\
& \Rightarrow \text { nil-semicommutative } \Rightarrow \text { weakly semicommutative. }
\end{aligned}
$$

In general, each of these implications is irreversible (see [6]).
Observe that $\operatorname{nil}\left(T_{n}(R, \alpha)\right)=(\operatorname{nil}(R), R, \cdots, R)$, we have that a ring R is reduced if and only if

$$
\operatorname{nil}\left(R[x ; \alpha] /\left(x^{n}\right)\right)=R x+\cdots+R x^{n-1}+\left(x^{n}\right) .
$$

[^0]: Received date: Oct. 3, 2015.
 Foundation item: The NSF (11071097, 11101217) of China and the NSF (BK20141476) of Jiangsu Province of China.

 * Corresponding author.

 E-mail address: wweiliang@tju.edu.cn (Wang W L), wangyao@nuist.edu.cn (Wang Y).

