On Non-commuting Sets in a Finite p-group with Derived Subgroup of Prime Order

Wang Yu-Lei ${ }^{1}$ and Liu He-GuO ${ }^{2}$
(1. Department of Mathematics, Henan University of Technology, Zhengzhou, 450001)
(2. Department of Mathematics, Hubei University, Wuhan, 430062)

Communicated by Du Xian-kun

Abstract

Let G be a finite group. A nonempty subset X of G is said to be noncommuting if $x y \neq y x$ for any $x, y \in X$ with $x \neq y$. If $|X| \geq|Y|$ for any other non-commuting set Y in G, then X is said to be a maximal non-commuting set. In this paper, we determine upper and lower bounds on the cardinality of a maximal non-commuting set in a finite p-group with derived subgroup of prime order.

Key words: finite p-group, non-commuting set, cardinality
2010 MR subject classification: 20F18
Document code: A
Article ID: 1674-5647(2016)03-0193-05
DOI: 10.13447/j.1674-5647.2016.03.01

In this paper, p is always a prime. The notation used is standard, see [1].
Let G be a finite group. A nonempty subset X of G is said to be non-commuting if $x y \neq y x$ for any $x, y \in X$ with $x \neq y$. And further, if $|X| \geq|Y|$ for any other noncommuting set Y in G, then X is said to be a maximal non-commuting set in G. We denote by $n c(G)$ the cardinality of a maximal non-commuting set in G, and denote by $c c(G)$ the minimal number of abelian subgroups covering G. Then we can obtain

$$
n c(G) \leq c c(G) \leq(n c(G)!)^{2}
$$

Further, Pyber ${ }^{[2]}$ has shown that there exists some constant c such that

$$
c c(G) \leq|G: \zeta G| \leq c^{n c(G)}
$$

Mason ${ }^{[3]}$ has shown that any finite group G can be covered by at most $[|G| / 2]+1$ abelian subgroups, thus

$$
n c(G) \leq[|G| / 2]+1
$$

For an extraspecial p-group G with order $p^{2 n+1}$, in the case of $p=2$, Isaacs has obtained that $n c(G)=2 n+1$ (see [4]). In the case of p being odd, Chin ${ }^{[5]}$ has determined the

[^0]following bounds for $n c(G)$,
$$
n p+1 \leq n c(G) \leq\left(p(p-1)^{n}-2\right) /(p-2) .
$$

Now we determine upper and lower bounds for the cardinality of a maximal noncommuting sets in a finite p-groups with derived subgroup of prime order.

Lemma $1^{[6]}$ Let G be a finite p-group with derived subgroup of order p. Then there exist the generators $x_{1}, \cdots, x_{2 n}, y_{1}, \cdots, y_{m}$ of G and a generator z of the derived subgroup of G, which satisfy

$$
\begin{array}{ll}
\left|x_{i}\right|=p^{t_{i}}, & i=1,2, \cdots, 2 n, \\
\left|y_{i}\right|=p^{l_{i}}, & i=1,2, \cdots, m, \\
{\left[x_{2 i-1}, x_{2 i}\right]=z,} & i=1,2, \cdots, n, \\
{\left[x_{2 i-1}, x_{j}\right]=1,} & j \neq 2 i, \\
{\left[x_{2 i}, x_{j}\right]=1,} & j \neq 2 i-1, \\
{\left[x_{i}^{p}, x_{j}\right]=1,} & i, j=1,2, \cdots, 2 n, \\
{\left[x_{i}, y_{j}\right]=1,} & i=1,2, \cdots, 2 n, j=1,2, \cdots, m, \\
{\left[y_{i}, y_{j}\right]=1,} & i, j=1,2, \cdots, m, \\
{\left[x_{i}, z\right]=1,} & i=1,2, \cdots, 2 n, \\
{\left[y_{i}, z\right]=1,} & i=1,2, \cdots, m .
\end{array}
$$

Theorem 1 Let G be a finite p-group with derived subgroup of order p, and $|G / \zeta G|=p^{2 n}$. Then
(1) if $p=2$, then $n c(G)=2 n+1$;
(2) if p is odd, then $n p+1 \leq n c(G) \leq\left(p(p-1)^{n}-2\right) /(p-2)$.

Proof. There exist the generators of $G: x_{1}, \cdots, x_{2 n}, y_{1}, \cdots, y_{m}, z$, which satisfy the conditions in Lemma 1. Obviously, $\zeta G=\left\langle x_{1}^{p}, \cdots, x_{2 n}^{p}, y_{1}, \cdots, y_{m}, z\right\rangle$.

Firstly, we assert

$$
\begin{aligned}
& {\left[\left(x_{1}^{r_{1}} x_{2}^{s_{1}}\right)\left(x_{3}^{r_{2}} x_{4}^{s_{2}}\right) \cdots\left(x_{2 n-1}^{r_{n}} x_{2 n}^{s_{n}}\right)\right] \cdot\left[\left(x_{1}^{r_{1}^{\prime}} x_{2}^{s_{1}^{\prime}}\right)\left(x_{3}^{r_{2}^{\prime}} x_{4}^{s_{2}^{\prime}}\right) \cdots\left(x_{2 n-1}^{r_{n}^{\prime}} x_{2 n}^{s_{n}^{\prime}}\right)\right] } \\
= & {\left[\left(x_{1}^{r_{1}^{\prime}} x_{2}^{s_{1}^{\prime}}\right)\left(x_{3}^{r_{2}^{\prime}} x_{4}^{s_{2}^{\prime}}\right) \cdots\left(x_{2 n-1}^{r_{n}^{\prime}} x_{2 n}^{s_{n}^{\prime}}\right)\right] \cdot\left[\left(x_{1}^{r_{1}} x_{2}^{s_{1}}\right)\left(x_{3}^{r_{2}} x_{4}^{s_{2}}\right) \cdots\left(x_{2 n-1}^{r_{n}} x_{2 n}^{s_{n}}\right)\right] }
\end{aligned}
$$

if and only if

$$
r_{1} s_{1}^{\prime}+r_{2} s_{2}^{\prime}+\cdots+r_{n} s_{n}^{\prime} \equiv s_{1} r_{1}^{\prime}+s_{2} r_{2}^{\prime}+\cdots+s_{n} r_{n}^{\prime}(\bmod p),
$$

where $0 \leq r_{i}, r_{i}^{\prime}, s_{i}, s_{i}^{\prime}<p$, and $i=1,2, \cdots, n$.
In fact, since

$$
\left[x_{2 i-1}, x_{2 i}\right]=z, \quad i=1,2, \cdots, n
$$

and

$$
x_{2 i-1}^{r_{i}} x_{2 i}^{s_{i}}=x_{2 i}^{s_{i} i} r_{2 i-1}^{r_{i}} z^{r_{i} s_{i}}, \quad 0 \leq r_{i}, s_{i}<p,
$$

we have

$$
\begin{aligned}
& {\left[\left(x_{1}^{r_{1}} x_{2}^{s_{1}}\right)\left(x_{3}^{r_{2}} x_{4}^{s_{2}}\right) \cdots\left(x_{2 n-1}^{r_{n}} x_{2 n}^{s_{n}}\right)\right] \cdot\left[\left(x_{1}^{r_{1}^{\prime}} x_{2}^{s_{1}^{\prime}}\right)\left(x_{3}^{r_{2}^{\prime}} x_{4}^{s_{2}^{\prime}}\right) \cdots\left(x_{2 n-1}^{r_{n}^{\prime}} x_{2 n}^{s_{n}^{\prime}}\right)\right] } \\
= & {\left[\left(x_{1}^{r_{1}^{\prime}} x_{2}^{s_{1}^{\prime}}\right)\left(x_{3}^{r_{2}^{\prime}} x_{4}^{s_{2}^{\prime}}\right) \cdots\left(x_{2 n-1}^{r_{n}^{\prime}} x_{2 n}^{s_{n}^{\prime}}\right)\right] \cdot\left[\left(x_{1}^{r_{1}} x_{2}^{s_{1}}\right)\left(x_{3}^{r_{2}} x_{4}^{s_{2}}\right) \cdots\left(x_{2 n-1}^{r_{n}} x_{2 n}^{s_{n}}\right)\right] }
\end{aligned}
$$

[^0]: Received date: Feb. 9, 2015.
 Foundation item: The NSF $(11301150,11371124)$ of China, the NSF (142300410134) of Henan Province and Plan for Scientific Innovation Talent (11CXRC19) of Henan University of Technology.

 E-mail address: yulwang@163.com (Wang Y L).

