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Abstract. This paper is concerned with the way to find an optimal deflation for the
eigenvalue problem associated with quadratic matrix polynomials. This work is a re-
sponse of the work by Tisseur et al., Linear Algebra Appl., 435:464-479, 2011, and solves
one of open problems raised by them. We build an equivalent unconstrained optimiza-
tion problem on eigenvalues of a hyperbolic quadratic matrix polynomial of order 2,
and develop a technique that transforms the quadratic matrix polynomial to an equiv-
alent one that is easy to solve. Numerical tests are given to illustrate several properties
of the problem.
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1 Introduction

Given a quadratic matrix polynomial
Q(A) =A*M+AC+K,
where M,C,K € R"*" with M nonsingular. Its associated quadratic eigenvalue problem
is
Q)x=0, y1Q(1)=0,

where A is an eigenvalue and x,y are its corresponding (right) eigenvector and left eigen-
vector respectively. An eigenvalue is of positive type, if ¥1Q'(A)x =yH(2AM+C)x > 0;
An eigenvalue is of negative type, if y7'Q’(A)x =y"(2AM+C)x <0.

Suppose that A(Q), the spectra of Q(A), is {A1,-++,A2, }. Deflating two distinct eigen-
values Aq,A; is to construct a new quadratic matrix polynomial
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such that A(q) ={A1,A2}, A(Qg) ={A3,--+, A2, }. Usually, in the two eigenvalues, one is of
positive type, and the other is of negative type. If M,C,K are symmetric, and A1 € A(Q)
but A; is nonreal, then A; € A(Q), and in this case, it is usually required to deflate this
conjugate pair together.

The deflation technique is very useful and popular in computing the eigenvalues of
a matrix, so that it is hoped to be used for computing the eigenvalues of quadratic ma-
trix polynomials. However, as far as we know, not many works discussed on this topic.
Meini [5] discussed a deflation method coupled in her so-called “shift-and-deflate” tech-
nique. Tisseur et al. [6] presented a general way to deflate two distinct eigenvalues of
quadratic matrix polynomials if the corresponding eigenvectors are given.

Here we briefly describe the idea of the method introduced by Tisseur et al. First they
developed a method to deflate a quadratic polynomial for two given eigenvalues whose
eigenvectors are parallel. Then they invented a way to transform a quadratic polynomial
for two given eigenvalues whose eigenvectors are nonparallel into a new one that has
two eigenvalues whose eigenvectors are parallel, i.e., transform this case into the solved
case.

The new quadratic matrix polynomial produced by the deflation may have a signif-
icantly large condition number compared to the original quadratic matrix polynomial.
For the special case that M,C,K are symmetric, Tisseur et al. gave an optimal choice to
minimize the condition number for the parallel case, but for the nonparallel case, in [6,
Section 3], they reported:

Identifying which solution minimizes the condition number x, (T)=||T |2 ||| T~ ||2
remains an open problem.

Here T is a related transformation matrix, of which the detailed form will be given below.

The aim of this paper is to solve this problem. First this problem is formulated and
simplified in Section 2, which induces a constrained optimization problem on the eigen-
values of a hyperbolic quadratic matrix polynomial of order 2. Next we parameterize (or
equivalently nondimensionalize) it and obtain an unconstrained optimization problem in
Section 3. Then we calculate the gradient and the Hessian matrix of the objective function
in Section 4. Then we make several numerical tests to show the properties of this prob-
lem and suggest a technique that transforms it to an equivalent problem whose objective
function is easy to solve, as is shown in Section 5. Finally some concluding remarks is
given in Section 6.

Notation. Throughout this paper, I, (or simply I if its dimension is clear from the con-
text) is the n X n identity matrix. For any scalar, vector, or matrix X, RX and I X are its
real part and imaginary part respectively; while || X||, and || X||« are its spectral norm and
sum-of-row norm. For any matrix X, A(X) represents its spectra, and A, (X) represents
the set consisting of all its nonzero eigenvalues. For any real symmetric matrix X, X >0
(X = 0) means that X is positive (semi-)definite, and X <0 (X <0) if —X >0 (=X = 0).



